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CFT. We give the bulk five dimensional interpretation, involving neighborhoods of Witten

graphs, of these gluing properties of the four dimensional boundary CFT. As a corollary

we give a simple description, based on Witten graphs, of a multiplicity of bulk topologies

corresponding to a fixed boundary topology. We also propose to interpret the correlators
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1. Introduction

AdS/CFT duality [1 – 3] provides a framework to study hard questions of quantum gravity,

using tractable calculations in gauge theory. The discovery of giant gravitons [4 – 6] and

the identification of their dual gauge theory operators [7, 8] open the way to exploring

transitions among these brane-like objects, as well as transitions from giant gravitons into

small, ordinary gravitons. From the point of view of the bulk gravity theory, these processes

are non-perturbative in nature and difficult to analyze quantitatively.

In this paper, we explain how to calculate the corresponding transition probabilities.

These can be obtained by appropriately normalizing the relevant gauge theory correlators

describing the bulk interactions. We show that, in general, the normalization factors in-

volve correlators on manifolds of non-trivial topologies. The result is a direct consequence
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of CFT factorization equations, which relate correlators on manifolds of different topolo-

gies. Factorization is expected to be a generic property of conformal field theories, which

follows from the operator/state correspondence and sewing properties of path integrals.

Here, we explore some of its implications for the case of the four dimensional N = 4 Super

Yang Mills theory. We prove explicit inequalities that follow after we discard some interme-

diate states from four dimensional factorization equations. As we shall demonstrate with

specific examples, factorization relations among correlators on spaces of different topologies

constrain the relative growth of the correlators as the number of colors is increased, in a

manner consistent with the probability interpretation. These probabilities are the generic

observables of string theory in asymptotically AdS backgrounds.

This paper is organized as follows. In section 2, we consider two normalization pre-

scriptions, one which we call the overlap-of-states normalization, and the other which we

call the multi-particle normalization, and use them to compute transition probabilities.

Both normalization schemes have been used in various contexts in the literature [7 – 9]. We

find that there is a problem with the use of the multi-particle normalization prescription.

We give several examples for which “multi-particle normalized” amplitudes grow with N ,

and so they do not yield well defined probabilities. The resolution of this puzzle is the first

main result of this paper. In general, to get well defined probabilities, we need to divide by

correlators on manifolds of more complicated topologies, as implied by factorization. The

main ideas relating factorization and probabilities are explained in section 3.

In section 4, we review the main aspects of factorization and apply them to derive

inequalities and probabilities in a simpler two dimensional model involving free complex

matrix fields. In section 5, we extend the discussion to the more relevant case of the four

dimensional N = 4 Super Yang Mills theory. In section 6, we summarize results of explicit

transition probability computations for processes involving giant and small gravitons in

AdS space.

Motivated by the need for the gluing properties of the boundary CFT in the correct

formulation of probabilities for bulk spacetime processes, we investigate how to lift the

geometrical boundary gluing properties to the bulk five dimensional Euclidean space. The

results are presented in section 7. Witten graphs, i.e. graphs with end points corresponding

to CFT operator insertions on the boundary of AdS and vertices in the bulk, and their

neighborhoods, are found to provide a simple framework for the bulk lifting of the boundary

gluings. Finally, we propose to interpret CFT correlators involving operators of large R

charge as topology-changing transition amplitudes between LLM geometries [10]. Section 7

may be read independently of the rest of the paper. Technical computations are described

in the appendices. A summary of notation used is given in appendix J.

2. Transitions from giants to KK gravitons: a puzzle

2.1 1/2 BPS states in the AdS/CFT correspondence: a brief review

We are interested in various interactions among particles and branes in the AdS5 × S5

geometry, and for cases in which the interacting states have non-zero angular momentum

on S5. These interactions can be studied in the context of the AdS/CFT correspondence
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by making use of the dictionary relating bulk states with conformal field theory operators.

We focus on 1/2 BPS states characterized by a single angular momentum charge J under a

U(1) subgroup of the SO(6) rotation group, and for which exact, non-perturbative results

can be obtained. Such states correspond to chiral primary operators of conformal weight

∆ = |J | in the dual U(N) N = 4 Super Yang Mills theory.

For small angular momentum, J ¿ N , the states describe Kaluza-Klein (KK) bulk

gravitons. Single particle KK states correspond to single trace operators of the form tr (ΦJ)

in the boundary conformal field theory [2, 3]. Here Φ is a complex field in the adjoint rep-

resentation of U(N), and this field has unit charge under the particular U(1) R-symmetry

subgroup we are considering. Perturbative supergravity interactions among KK graviton

states have been studied in [11, 12], and the results have been matched with boundary

conformal field theory computations.

When we increase the angular momentum so that J ∼
√

N , the states describe strings

in plane wave backgrounds [13]. More precisely, the operator tr (ΦJ) for J ∼
√

N can be

associated to the ground state of the string in light-cone gauge. Excited string states can

be obtained by replacing some of the Φ’s in the trace with other transverse scalars. These

states are nearly BPS and their interactions have been studied in [14 – 16] from the gauge

theory and the bulk point of view.

When the angular momentum is a finite fraction of N , J ∼ N , some of the states

describe large spherical D3 branes inside the S5 component or spherical branes inside the

AdS5 component of the bulk geometry, the so called giant gravitons [4 – 6]. To describe

giant graviton states in the boundary Super Yang Mills theory, we use a basis for the

space of 1/2 BPS operators that consists of Schur polynomials of the matrix Φ. The

space of Schur polynomials is in one-to-one correspondence with the set of Young diagrams

characterizing irreducible representations of U(N). Thus we denote the Schur polynomials

by χR(Φ), with R denoting the corresponding U(N) representation. Now if the Young

diagram corresponding to the U(N) representation R has n boxes, then it also characterizes

an irreducible representation of the symmetric group Sn. Explicitly χR(Φ) is given by

χR(Φ) =
1

n!

∑

σ∈Sn

χR(σ)tr (σΦ) =
1

n!

∑

σ∈Sn

χR(σ)





∑

i1,i2,...,in

Φi1
iσ(1)

Φi2
iσ(2)

. . . Φin
iσ(n)



 (2.1)

Using the dictionary developed in [8, 17] (see also [7]), the Schur operator corresponding

to an AdS giant with L units of angular momentum on S5 is given by χ[L](Φ), where

we denote by [L] a Young diagram with a single row of length L. This Young diagram

describes a symmetric representation of U(N). Similarly, the operator corresponding to a

sphere giant is given by χ[1L](Φ), where [1L] denotes a Young diagram with a single column

of length L describing an antisymmetric representation.1 Operators describing open string

excitations on giant gravitons have been discussed in [19, 20].

1Kaluza-Klein gravitons can also be described in the Schur polynomial basis: for small angular mo-

menta, the single trace operators tr (ΦJ ) can be expressed in terms of combinations of Schur polynomials

corresponding to small Young diagrams. The choice of the single trace basis allows one to match directly

the Fourier modes of the operators with the particle creation and annihilation operators of perturbative

bulk supergravity [18]
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At even larger values for the angular momentum, J ∼ N2, one finds bulk geome-

tries [10]. These geometries have an SO(4) × SO(4) × R isometry group and preserve 16

of the original 32 supersymmetries. In the boundary theory, they are described by free

fermion droplets in the two dimensional phase space occupied by the fermions. These

fermions are the eigenvalues of the matrix Φ [21].

Interactions involving small KK gravitons, giant gravitons and LLM geometries should

be encoded in the correlation functions of the corresponding dual CFT operators.2 Our

basic remarks on normalizations and probabilities are general, valid for any coupling in

the gauge theory, but our explicit computations are done in the free gauge theory limit.

When they involve the special class of correlators called extremal, the explicit results are

valid for any coupling. These are correlators in which the spacetime coordinates of all anti-

holomorphic operators involving Φ† coincide while the positions of holomorphic operators

are arbitrary (and vice versa). Non-renormalization theorems protect extremal correlators

of 1/2-BPS chiral primaries so that the weak coupling computation of the correlators can

be extrapolated to strong coupling without change [12, 26 – 28].

Some extremal correlators describe transitions from a giant graviton state into multi-

particle KK graviton states. For example, the correlator

〈χ[N ](Φ
†)(y)tr (ΦJ1)(x1)tr (ΦJ2)(x2) . . . tr (ΦJn)(xn)〉 (2.2)

such that
∑n

i Ji = N and Ji ¿ N , encodes information about the transition from an

AdS giant with N units of angular momentum into several KK gravitons. Note that these

processes involve “in” and “out” states that are half-BPS and stable. Their existence does

not indicate an instability of the initial state, since the survival probability does not fall

off exponentially with time. We may view the transitions in terms of a choice of detectors.

In the above case for example, the detectors are chosen to detect KK gravitons. The

strong dependence of transition probabilities on the choice of measurement was emphasized

in [29, 30]. The reverse process, where several KK gravitons give rise to a giant graviton

is also of interest. We wish to calculate the probabilities for such transitions to occur.

Most of these probabilities will be exponentially suppressed in N ∼ 1/gs indicating the

non-perturbative nature of such transitions.

2.2 Statement of the puzzle

We want to work out the normalized amplitudes for the transition from AdS and sphere gi-

ant graviton states either into other giant gravitons or into many Kaluza-Klein gravitons.

We make use of two different normalizations: the multi-particle normalization and the

overlap-of-states normalization. For the multi-particle normalization we divide the correla-

tor by the norms of each of the products separately; for the overlap-of-states normalization

we divide by the norm of all the outgoing states together. In this section, we ignore the

spatial structure of the correlators and only consider the matrix-index structure. In our

exact treatment later we cannot ignore the spatial dependencies of the correlators.

2For some discussions of such gauge theory correlators see [22 – 24, 9, 25].
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The multi-particle-normalized transition from an AdS giant graviton state with angular

momentum N into several Kaluza-Klein gravitons, all of which have angular momentum

J , is given by
∣

∣〈χ[N ](Φ
†)(tr (ΦJ))N/J 〉

∣

∣

2

〈χ[N ](Φ†)χ[N ](Φ)〉 〈tr (Φ†J)tr (ΦJ)〉N/J
(2.3)

and the overlap-of-states-normalized S giant transition is given by

∣

∣

∣〈χ[1N ](Φ
†)(tr (ΦJ))N/J 〉

∣

∣

∣

2

〈χ[1N ](Φ
†)χ[1N ](Φ)〉 〈(tr (Φ†J ))N/J (tr (ΦJ))N/J 〉 (2.4)

The first part of the puzzle is that, in general, the multi-particle normalization does

not yield well-defined probabilities. For example if we calculate the AdS giant graviton

process (2.3) for J = N/2, we get the answer

∣

∣

∣

〈

χ[N ](Φ
†)tr (Φ

N
2 )tr (Φ

N
2 )

〉

∣

∣

∣

2

〈χ[N ](Φ†)χ[N ](Φ)〉
〈

tr (Φ†N
2 )tr (Φ

N
2 )

〉〈

tr (Φ†N
2 )tr (Φ

N
2 )

〉

∼ 1

6
√

2

(

32

27

)N

(2.5)

which is bigger than 1 and therefore does not yield a well-defined probability.

Similarly the multi-particle-normalized transition (2.3) for J ¿ N is given by

∣

∣〈χ[N ](Φ
†)(tr (ΦJ))N/J 〉

∣

∣

2

〈χ[N ](Φ†)χ[N ](Φ)〉 〈tr (Φ†J )tr (ΦJ)〉N/J
∼ 2−

1
2 e−N+2N log(2)−(N/J) log(J) (2.6)

The factor multiplying N in the exponential is −1/2 + log(2) − (1/2J) log(J), which is

positive for all J (because log(2) dominates). Thus this amplitude exponentially increases

with N for all J . This is also inconsistent with a probability interpretation.

When we consider the multi-particle normalized transition from an AdS giant into two

smaller AdS giants, we get similar divergent results

∣

∣

∣

〈

χ[N ](Φ
†)χ[ N

2
](Φ)χ[ N

2
](Φ)

〉

∣

∣

∣

2

〈

χ[N ](Φ†)χ[N ](Φ)
〉〈

χ[ N
2

](Φ
†)χ[ N

2
](Φ)

〉〈

χ[ N
2

](Φ
†)χ[ N

2
](Φ)

〉 ∼ 3√
8

(

32

27

)N

(2.7)

Note however that the multi-particle normalization does not always give divergent

results. For example the transition from a sphere giant state into KK gravitons with

J ¿ N is given by

∣

∣

∣〈χ[1N ](Φ
†)(tr (ΦJ))N/J 〉

∣

∣

∣

2

〈χ[1N ](Φ
†)χ[1N ](Φ)〉 〈tr (Φ†J)tr (ΦJ)〉N/J

∼ (2π)
1
2 e−N+ 1

2
log(N)−(N/J) log(J) (2.8)

which is exponentially decreasing for all J .

The second part of the puzzle is that there is no clear way to decide which normal-

ization to use. In this paper we solve both puzzles. We will show that the multi-particle

normalization requires us to divide by the two-point function on a higher genus manifold.

This will yield well-defined probabilities for transitions from a single giant graviton state
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=
∑

B

|B〉〈B|
〈B|B〉

Figure 1: A sphere correlator by gluing two spheres

into a collection of smaller objects. We will also find that different transition probability

interpretations require different normalizations.

A final subtlety is that for transitions from a giant state to states described by single

trace operators, we cannot just naively take the square of the absolute value of the overlap

amplitude of the giant graviton operator with a bunch of traces. Instead we should take the

overlap of the giant graviton operator with traces and multiply with the overlap amplitude

involving the duals of the trace operators. The dual is defined in terms of the metric on

the space of traces: GijOj .

Details of the calculations presented in this section, as well as several other computa-

tions, are given in appendix A. The correctly normalized results for the processes discussed

here are given in section 6. These are exponentially suppressed in N as expected.

3. From factorization to probability interpretation of correlators

3.1 Factorization on S4 and probabilities

Factorization in conformal field theory relates n-point correlators on the sphere to lower

point correlators. Consider

|〈A†(x∗)B(Q)〉|2 = 〈A†(x∗)B(Q)〉 〈B†(Q∗)A(x)〉 (3.1)

Factorization implies that we can interpret a normalized version of this as a probability for

the state created by the operator A at x to evolve into the state created by the operator B at

Q∗. The action of conjugation acts by reversing the sign of the Euclidean time coordinate.

Using a basis B for the set of all possible operators, which we choose to diagonalize

the metric on the space of local operators, the factorization equation takes the form

〈A†(x∗)A(x)〉 =
∑

B

〈A†(x∗)B(Q)〉 〈B†(Q∗)A(x)〉
〈B†(Q∗)B(Q)〉 (3.2)

See figure 1. Dividing by the term on l.h.s. we have

1 =
∑

B

P (A(x) → B(Q)) (3.3)

– 8 –
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where P is interpreted as the probability for A to evolve into B, given by

P (A(x) → B(Q)) =
〈A†(x∗)B(Q)〉 〈B†(Q∗)A(x)〉
〈A†(x∗)A(x)〉〈B†(Q∗)B(Q)〉 (3.4)

In the context of the 2D Matrix CFT model ( see section 4 ) where the fields have

matrix oscillators in their mode expansion, the operation of conjugation acts as α−n → α†
n

in the holomorphic sector. This is a symmetry of L0. Similarly in the antiholomorphic

sector, we have that ᾱ−n → ᾱ†
n, which is a symmetry of L̄0. Hence the conjugation is a

symmetry of the Hamiltonian H = L0 + L̄0 which generates translations in time.

In Euclidean theories, the proper definition of the adjoint of an operator involves the

usual conjugation as well as the reversal of the Euclidean time. This operation guarantees

that self-adjoint operators remain self-adjoint under Euclidean time evolution: A(τ) =

eHτA(0)e−Hτ . It also means that for a physical theory 〈A†(−τ, θ)A(τ, θ)〉 must be positive,

a condition called reflection positivity [31]. Thus the r.h.s. of eq. (3.4) is positive as it must

be the case for a proper probability interpretation.

The same thing can be said about extremal correlators which involve holomorphic

operators at a number of different points:

〈A†
1(x

∗
1)A

†
2(x

∗
2) . . . A†

k(x
∗
k)A1(x1)A2(x2) . . . Ak(xk)〉

=
∑

B

〈A†
1(x

∗
1)A

†
2(x

∗
2) . . . A†

k(x
∗
k)B(Q)〉 〈B†(Q∗)A1(x1)A2(x2) . . . Ak(xk)〉
〈B†(Q∗)B(Q)〉

(3.5)

Then we can still derive a sum of probabilities equal to 1 with

P (A1(x1), A2(x2) . . . A(xk) → B(Q))

=
|〈A†

1(x
∗
1)A

†
2(x

∗
2) . . . A†

k(x
∗
k)B(Q)〉|2

〈A†
1(x

∗
1)A

†
2(x

∗
2) . . . A†

k(x
∗
k)A1(x1)A2(x2) . . . Ak(xk)〉 〈B†(Q∗)B(Q)〉

(3.6)

Note that these arguments involve the overlap-of-states normalization, not the multi-

particle normalization. If we replace |B(Q)〉 by a state created by more than one operator

e.g |B1(y1)B2(y2)〉 the formula (3.6) can be used but it will not give an answer correspond-

ing to a probability for separate detectors measuring B1(y1) and B2(y2). We will describe

the case of multiple detectors and multi-particle normalization in the next subsection.

We will describe the detailed factorization equations later on, which follow from con-

formal invariance and the sewing properties of path integrals. These equations involve

sums over all operators. There is a limit of large separations where the factorization can be

restricted to BPS states, and gives the combinatoric (position independent) factorization

equations in terms of the Littlewood-Richardson coefficients obtained in [17].

If we use the trace basis for the B’s in (3.4), we still have a factorization equation. In

this basis, the probability is defined by

P (A → B) =
〈A†B〉 〈B̃†A〉

〈A†A〉 (3.7)

where B̃ is the dual operator to B, with duality being given by the inner product defined

by the 2-point function (see the appendix section G.2.1 for more details).
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=
∑

B1,B2

|B1〉〈B1|
〈B1|B1〉

|B2〉〈B2|
〈B2|B2〉

Figure 2: A torus correlator by gluing two spheres

3.2 Higher topology and multi-particle normalization

We can extend these arguments to derive the probability interpretation for the case of

multiple outgoing particles.

We need to consider correlators of higher topology. Take the R
4 manifold with two

B4’s cut out and an operator insertion. This gives a manifold with two S3 boundaries and

a puncture. Take a second copy of R
4 with the B4’s cut out and an operator inserted. Glue

each S3 boundary with a corresponding S3 boundary on the other R
4. Call this manifold

X and consider a two-point function on X:

〈A†(x∗)A(x)〉G=1 (3.8)

This procedure is analogous to that of gluing two cylinders in 2d CFT to get a genus one

surface with two punctures. Here we are doing the gluing in a 4d CFT, but we have used

the notation G = 1 by analogy. We introduce the notation Σ4(G), to denote the four

dimensional analog of a genus G surface in two dimensions. It can be obtained by taking

two copies of S4 with G + 1 non-intersecting balls removed, and gluing the two along the

S3 boundaries. To define probabilities for some set of states to go into G + 1 states we

need to normalize with correlators on Σ4(G).

We can argue for this as follows. By the factorization argument we have

〈A†(x∗)A(x)〉G=1 =
∑

B1,B2

〈A†(x∗)B1(C1)B2(C2)〉 〈B†
2(C

∗
2 )B†

1(C
∗
1 )A(x)〉

〈B†
1(C

∗
1 )B1(C1)〉 〈B†

2(C
∗
2 )B2(C2)〉

(3.9)

See figure 2. C1 and C2 are circles along which we cut the torus. The operators Bi(Ci)

create states localized on these circles. By scaling, these are related to the more familiar

states which, in the operator-state correspondence, are obtained by local operators acting

on the vacuum. Hence the equation above can be related to correlation functions of usual

local operators. Eq. (3.9) is explained in more detail in section 4 in the two dimensional

case, and in section 5 in the four dimensional case.

It follows from (3.9) that

1 =
∑

B1,B2

〈A†(x∗)B1(C1)B2(C2)〉 〈B†
2(C

∗
2 )B†

1(C
∗
1 )A(x)〉

〈A†(x∗)A(x)〉G=1 〈B†
1(C

∗
1 )B1(C1)〉 〈B†

2(C
∗
2 )B2(C2)〉

(3.10)
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More generally

1 =
∑

B1,B2

〈A†
1(x

∗
1) · · ·A†

k(x
∗
k)B1(C1)B2(C2)〉 〈B†

2(C
∗
2 )B†

1(C
∗
1 )Ak(xk) · · ·A1(x1)〉

〈A†
1(x

∗
1) · · ·A†

k(x
∗
k)Ak(xk) · · ·A1(x1)〉G=1 〈B†

1(C
∗
1 )B1(C1)〉 〈B†

2(C
∗
2 )B2(C2)〉

(3.11)

Since every summand is real and positive, it can be interpreted as a probability. We

conclude that to normalize correlators in order to get a probability for the case of multiple

outgoing objects we need to divide by factors involving higher genus correlators. This

corrects the naive multi-particle prescription used in the previous section.

We conclude this section with some comments:

• Notice that the probabilities we describe are defined subject to the constraint that the

number of final states is fixed. Multi-particle states in this context are obtained by

the action of products of well separated operators on the vacuum. A brief discussion

of conditional probabilities subject to additional conditions, such as fixing one of the

outgoing states, is given in appendix section B.

• In this paper we focus on Euclidean correlators on R
4 (or S4) and higher genus

spaces. A Lorentzian interpretation can be developed by choosing an appropriate

time direction so that the out-states appear at a later time. When the factorization

equations are appropriately continued to Lorentzian signature, they still provide re-

lations between correlators. We have not described the normalization procedure in

a purely Lorentzian set-up, but we expect that the probabilities continue to be rele-

vant. Certainly in the large distance limits where the probabilities are independent

of separations (see section 6), this is the case. A more thorough investigation of the

Lorentzian picture is desirable, where issues of bulk causality of the results can be

explored along the lines of [32].

• We work in a basis where the states are characterized by the action of a local operator

on the CFT vacuum. These states are natural to consider from the CFT point of

view. In general, such states are linear superpositions of states carrying arbitrary

four-momentum. Definite momentum states must be constructed so as to recover the

S-matrix of type IIB string theory in the flat space limit, as described in [33 – 35].

It would be interesting to express the factorization equation in the momentum basis

and study which features survive in the flat space limit.

4. Factorization and gluing amplitudes in two dimensions

4.1 Matrix Model CFT

Consider the 2-dimensional CFT with action

S =
1

4π

∫

d2zTr
(

∂X∂̄X + ∂Y ∂̄Y
)

(4.1)

where X and Y are Hermitian N × N matrices. For these fields the two point functions

on the sphere are given by

〈Xi
j(z1, z̄1)X

k
l (z2, z̄2)〉 = −δi

lδ
k
j log |z1 − z2|2 = 〈Y i

j (z1, z̄1)Y
k
l (z2, z̄2)〉 (4.2)
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We also introduce the complex fields

Z =
X + iY√

2
, Z† =

X − iY√
2

(4.3)

for which the two-point functions on the sphere are given by

〈Z†i
j(z1, z̄1)Z

k
l (z2, z̄2)〉 = −δi

lδ
k
j log |z1 − z2|2

〈Zi
j(z1, z̄1)Z

k
l (z2, z̄2)〉 = 〈Z†i

j(z1, z̄1)Z
†i

l(z2, z̄2)〉 = 0 (4.4)

Our goal is to study factorization properties for correlators of this matrix model CFT.

The sums that enter in the factorization identities run over the space of local operators

of the conformal field theory. It is natural to consider polynomials in the derivatives

∂Z, ∂2Z . . ., and ∂Z†, ∂2Z† . . ., along with exponentials of the matrices Z,Z† which generate

non-zero momentum sectors. The non-zero momentum states decouple in most sectors of

interest. As discussed in section 4.6.1, in some cases of interest it is also consistent to

truncate to the space of local operators invariant under global U(N) transformations3

Z → U †ZU (4.5)

This subspace of local operators is given by traces of all matrix words built using Z, ∂nZ,

Z† and ∂nZ† (n > 0)) as letters. If we consider factorization equations for U(N) invariant

operators in the limit of large separations, it is possible to further restrict to just those

words built using letters ∂Z or ∂Z† only. This is discussed further in section 4.3. A basis

for this subspace is provided by the loops

An(z) = Tr ((∂Z)n) , A†
n(z) = Tr

(

(∂Z†)n
)

(4.6)

along with their products, i.e. multi-traces. Although this basis is complete and so perfectly

acceptable, it is awkward. In particular, the two point function on the space of local

operators is not diagonal with respect to this basis. This is a significant complication

because the matrix inverse of this two point function enters the factorization equations.

Since the two point functions

〈∂Z†i
j(z1)∂Zk

l (z2)〉 =
−δi

lδ
k
j

(z1 − z2)2
(4.7)

have the same index structure as those corresponding to the elementary free field Φi
j in

the four dimensional super Yang Mills case, we can use results of [8, 17] for the color

combinatorics. Thus as in the four dimensional case, a far more convenient basis is provided

by the Schur polynomials. This basis is complete and further, the two point function on

the space of Schur polynomials is diagonal.

3In the case of the four dimensional Super Yang Mills theory it is always consistent to truncate to the

subspace of local gauge invariant operators (see section 4.6.1).
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4.2 An inner product on the states

In unitary two-dimensional conformal field theories, we can express the Hermitian inner

product on the set of states as a product on the space of local operators {Ai(z, z)}:

Gij = 〈i|j〉 =
〈

A†′
i (z′, z′ = 0)Aj(z, z = 0)

〉

S2
(4.8)

where z and z′ are related by zz′ = 1, and we denote by |i〉 the state corresponding to

the operator Ai(z, z̄). Note that the prime on the first operator indicates the z′-frame,

and the operation of conjugation on it conjugates all explicit factors of i and transposes

matrix indices, but leaves the z and z̄ indices unchanged. This is essentially the operation

of Euclidean conjugation, which we review in the appendix C.

When the inner product of states is defined as an operator product, the hermiticity

property 〈i|j〉 = 〈j|i〉∗ follows from the properties of conformal invariance and operator

conjugation [36, 37]. In a unitary theory, the inner product of states is nonnegative,

〈i|i〉 ≥ 0 for all i, implying a positivity property for the metric Gij .

As an example, consider correlators involving holomorphic derivatives of Z, of arbitrary

order, in the complex matrix model CFT. By direct computation, these are given by (see

appendix D)

〈

∂′mZ†i
j(z

′ = 0)∂nZk
l (z = 0)

〉

S2
= m((m − 1)!)2δnmδi

lδ
k
j (4.9)

The same result also follows if we use the operator-state map ∂kZi
j ↔ −i(k− 1)!α−k;j

i and

the inner product on states

〈0|(i(p − 1)!α† i
p;j)(−i(k − 1)!α−k;q

l|0〉 = k
[

(k − 1)!
]2

δpkδ
i
qδ

l
j (4.10)

Correlators involving products of derivatives of Z and Z† split up into sums and products

of correlators given by eq. (4.9).

Since the metric Gij = 〈i|j〉 is Hermitian and positive definite it is diagonalizable with

positive real eigenvalues. In an appropriate basis we then have

Gij = 〈i|i〉δij (4.11)

with inverse

Gij =
1

〈i|i〉δ
ij (4.12)

From the form of eq. (4.9), we know that part of this diagonal basis is given by

derivatives of Z. Gauge invariant Schur polynomials of the primary field ∂Z are also part

of this diagonal basis. This follows since the structure of the two-point function of 〈∂Z†∂Z〉
is the same as that for free four dimensional fields studied in [8].

4.3 Sphere factorization

For multi-point functions with a simple choice of operator positions, the spacial dependence

factors out very simply and all the interesting structure is in the dependence on N and the
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choice of operators. For example

〈
l

∏

i=1

χRi(∂Z†)(z)

k
∏

j=1

χSj(∂Z)(0)〉=z−2∆
∑

S

g(R1, . . . , Rl;S)
nS !DimN (S)

dS
g(S1, . . . , Sk;S),

(4.13)

Here ∆ is the sum of the number of boxes in the Young diagrams R1, R2 · · ·Rn. Further,

nS = ∆ is the number of boxes in Young diagram S, DimN (S) is the dimension of S taken

as a representation of U(N), dS is the dimension of S taken as a representation of the

symmetric group Sn and g(R1, R2, . . . , Rl;S) is a Littlewood-Richardson (LR) coefficient.

It is possible to derive fusion and factorization identities for appropriate ratios of such

correlators [17]. These identities are a direct consequence of the sum rule

g(R1, R2, . . . , Rn;S) =
∑

S1,S2,...,Sn−2

g(R1, R2;S1)g(S1, R3;S2) · · · g(Sn−2, Rn;S) (4.14)

satisfied by the LR coefficients. It is natural to expect that the CFT factorization will

reduce to these combinatoric (position independent) factorization identities in some limit.

In this section we describe this in the simplest possible setting, where two S2 correlators

are glued to give another S2 correlator. The local coordinates on the first S2 are denoted

by z; the local coordinates on the second S2 are denoted by w. The two spheres are glued

around z, z = 0 and w,w = 0 with zw = 1.

The CFT factorization equation states

〈O1(p1)O2(p2)〉S2 =
∑

ij

Gij〈O1(p1)Ai(z, z = 0)〉S2〈A†
j(w,w = 0)O2(p2)〉S2 (4.15)

This equation involves a sum over all operators. We will now argue that there is a limit of

large separations where the factorization can be restricted to “BPS states”, and gives the

combinatoric (position independent) factorization equations in terms of the LR coefficients.

To see this, focus on the leading contribution to the factorization equations in the large

separation limit. By a large separation limit, we mean that we take the distance between

the operators, and the distance between the puncture and operators in the correlators to be

large. From now on we will assume that we are in this limit and check the N dependence

that follows from factorization. Since we are considering a large separation limit, it is

clear that operators that dominate the sum will be those with the smallest conformal

dimension. In addition, the only non-zero correlators have an equal number of Zs and Z†s.

Taken together, these facts imply that we can restrict to Schur polynomials in ∂Z (or in

∂Z†). The operators that are dropped from the factorization sum, are polynomials that

include at least one letter of the form ∂nZ, with n > 1. These higher derivative terms

lead to a faster fall off of the correlator as one increases the separation between operator

locations, so that they don’t contribute in the leading order. With this restriction, the

color combinatorics for the CFT are identical to the zero dimensional model so that the

only difference between the two is extra spacial dependence in the CFT correlators. For

concreteness, consider the correlator

〈
∏

i

χRi(∂Z†(zi))
∏

j

χSj (∂Z(wj))〉 (4.16)
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|z| = 1 |w| = 1

|z′| = e
−2πL |w′| = e

−2πL

Figure 3: The z-annulus and the w-annulus

Using the two point functions, in the large separation limit,

〈∂Z†i
j(z1)∂Zk

l (w1)〉 = −(w′
1)

2〈∂Z†i
j(z1)∂Zk

l (w′
1)〉 =

(w′
1)

2

(w′
1 − z1)2

δi
lδ

k
j

=
1

(1 − z1w1)2
δi
lδ

k
j ≈ 1

(z1)2
1

(w1)2
δi
lδ

k
j

〈∂Z†i
j(z1)∂Zk

l (0)〉 = − 1

(z1)2
δi
lδ

k
j

〈∂Z†i
j(0)∂Zk

l (w1)〉 = − 1

(w1)2
δi
lδ

k
j (4.17)

the spacial dependence factors out on both sides leaving the combinatoric (position in-

dependent) factorization equations of [17]. The role of the higher derivatives that have

been dropped is to modify the spacial dependences so that the two sides match for any

separation. This is illustrated explicitly, in a simple setting, in appendix D.

4.4 Geometrical gluing and factorization of higher genus correlators

4.4.1 The torus gluing

We will now describe a procedure for getting correlators on a torus by gluing together

3-punctured spheres. The procedure can be generalized to the case of higher topology

Riemann surfaces following the description in [37 – 41].

Suppose the first sphere is covered with coordinate patches z and z′ glued together by

zz′ = 1, while the second sphere is covered with coordinate patches w and w′ glued together

by ww′ = 1. Let the first sphere have punctures at z, z = 0, z′, z′ = 0 and z, z = e2πs

(s > 0) and the second at w,w = 0, w′, w′ = 0 and w,w = e2πs.

We cut out from the first sphere a region around z, z = 0 and another region around

z′, z̄′ = 0 to give the first annulus. We cut out from the second sphere a region around

w, w̄ = 0 and a region around w′, w̄′ = 0 to give a second annulus. The cuts around z, z̄ = 0

and w, w̄ = 0 can be described as cutting out |z| < e−2πδ and |w| < 1 for δ > 0. We glue
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the two annuli by identifying points in the regions e−2πδ ≤ |z| ≤ 1 and 1 ≤ |w| ≤ e2πδ with

zw = 1. Thus if we are approaching |z| = 1 from |z| > 1, once we enter the overlap region,

we are now moving away from |w| = 1 in the direction of increasing |w|. The cut regions

around z′, z′ = 0 and w′, w′ = 0 can be described by |z′| < e−2π(L+δ) and |w′| < e−2πL.

Points on the two annuli regions e−2π(L+δ) ≤ |z′| ≤ e−2πL and e−2πL ≤ |w′| ≤ e−2π(L−δ)

respectively are identified by the equation z′w′ = e−4πL. The gluing procedure produces

a torus. If we continuously increase |z| from the region near |z| = 1 we move into the z′

patch with decreasing |z′|, via zz′ = 1. This maps to increasing |w′| in the w′ patch via

z′w′ = e−4πL. This maps in turn into decreasing |w| in the region near |w| = 1 on the

second annulus, via ww′ = 1, which maps back to the region near |z| = 1 on the first

annulus, thus completing the periodic Euclidean time cycle of the torus. The δ factors can

be taken to zero.

4.4.2 Factorization of torus correlators

We know from general arguments [37 – 41] that for operators O1 and O2 on a torus with

modular parameter τ , q = e2πiτ ,

〈O1(p1)O2(p2)〉T 2 = (qq)−c/24
∑

ij

∑

kl q
hjqh̃jGijGkl

〈

O1(p1)A†′
j (z′, z′ = 0)Ak(z, z = 0)

〉

S2

×
〈

A†
l (w,w = 0)A′

i(w
′, w′ = 0)O2(p2)

〉

S2
(4.18)

where z and z′, related by zz′ = 1, are coordinates on one sphere and w and w′, related

by ww′ = 1, are coordinates on another sphere. The two spheres are sewn together around

z, z = 0 and w,w = 0 with zw = 1 and around z′, z′ = 0 (z, z = ∞) and w′, w′ = 0

(w,w = ∞) with z′w′ = q = e−4πL to get a torus with τ = 2iL.

We shall work with a basis of operators for which the metric is diagonal so that

Gij = (1/〈i|i〉)δij . Then the expression above can be written as

〈O1(p1)O2(p2)〉T 2 =(qq)−c/24
∑

i

∑

k

qhiqh̃i
1

〈i|i〉〈k|k〉
〈

O1(p1)A†′
i (z′, z′ = 0)Ak(z, z = 0)

〉

S2

×
〈

A†
k(w,w = 0)A′

i(w
′, w′ = 0)O2(p2)

〉

S2
(4.19)

Since the metric only mixes operators of the same dimension, the operators Ai,Ak can

be chosen to be eigenstates of the scaling operator. Notice that when both the operators

O1,O2 are set equal to the unit operator, we recover the modular invariant torus partition

function.

The geometrical gluing picture described in the previous section provides a set up to

demonstrate how a factorization equation such as (4.19) arises. The basic features of the

following manipulations are in figure 4. The result can be understood naturally in terms

of the operator-state correspondence of conformal field theories. We let the operator O1 to

be located at z, z = e2πs and the operator O2 to be located at w,w = e2πs with 0 < s < L.

Consider first the z-correlator appearing in eq. (4.19)

〈

A†′
i (z′, z′ = 0)O1(z, z = e2πs)Ak(z, z = 0)

〉

S2
(4.20)
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CR
1

CL
1

CR
1

CL
1

∑

CR
2

|w| = 1

CL
1

CR
1

|z′| = e−2πL |w′| = e−2πL

CL
2

=
∑

k

|k; CL
1
〉〈k; CR

1
|

〈k; CL
1
|k; CR

1
〉

|z| = 1

CL
2

CL
2

∑

CR
2

CR
2

=
∑

i

|i; CL
2
〉〈i; CR

2
|

〈i; CL
2
|i; CR

2
〉

Figure 4: The torus correlator obtained after gluing - see equation (4.28)

where we choose to order the operator insertions radially with respect to |z|. To construct

the z-annulus we remove the interior of the unit disk, |z| < 1, and replace the operator at

z, z = 0, Ak(z, z = 0), by a state on the boundary at |z| = 1. We also remove the patch

|z′| < e−2πL and replace the operator at z′, z′ = 0 (z, z = ∞), A†′
i (z′, z′ = 0), by a state on

the boundary at |z′| = e−2πL.

These states arise as follows. Using the operator/state correspondence we associate to

the operator Ak(z, z = 0) an “in-state” |Ak〉 defined by limz,z→0 Ak(z, z)|0〉. We can think

of this state as living on a small circle of radius |z| = ε surrounding the origin z, z = 0,

and consider the limit ε → 0. Notice that there are no other operator insertions in the

unit disk. Then the path integral over the unit disk amounts to radially propagating (or

scaling) this state to a state at |z| = 1. This operation is equivalent to acting with the

radial evolution operator (1/ε)−L0−L̃0 on |Ak〉. The end result is that the states differ by

a scale factor: |k; |z| = 1〉 = εhk+h̃k |Ak〉. The new state is an eigenstate of the dilatation

operator.

In a similar way, we associate to the operator A†′
i (z′, z′ = 0) an “out-state” 4 〈Ai|

4The “in” and “out- states” thus defined, are conjugates of each other: 〈A| = |A〉† [36].
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defined by limz′,z′→0〈0|A†′
i (z′, z′). This state can be thought of as living on a circle of radius

|z′| = ε surrounding z′, z′ = 0, in the limit ε → 0. Now consider the path integral over

the region 0 ≤ |z′| < e−2πL. This amounts to radially propagating a state at |z′| = e−2πL

to the state at z′, z′ = 0. Notice that we have chosen radial evolution in the direction of

increasing |z| or equivalently in the direction of decreasing |z′|. To find the finite radius

state, we consider the left action of the inverse radial evolution operator (e−2πL/ε)L0+L̃0

on 〈Ai|. This operation gives 〈i; |z′| = e−2πL| = 〈Ai|(e2πLε)−hi−h̃i .

Now consider the w-correlator in eq. (4.19)

〈

A†
k(w,w = 0)O2(w,w = e2πs)A′

i(w
′, w′ = 0)

〉

S2
(4.21)

where we choose to radially order the operators with respect to |w′|. The w-annulus is

constructed in a similar way. The patch 0 ≤ |w′| < e−2πL is removed replacing the operator

at w′, w′ = 0, A′
i(w

′, w′ = 0), by the state |i; |w′| = e−2πL〉 = (e2πLε)hi+h̃i |Ai〉. Similarly

the patch 0 ≤ |w| < 1 is removed replacing the operator at w,w = 0, A†
k(w,w = 0), by the

state 〈k; |w| = 1| = 〈Ak|ε−hk−h̃k .

In this way each correlator is replaced with a matrix element of a single operator. The

z-correlator (4.20) is replaced with

(e2πLε)hi+h̃i

εhk+h̃k

〈

i; |z′| = e−2πL
∣

∣

∣O1(z, z = e2πs)
∣

∣

∣k; |z| = 1
〉

(4.22)

while the w-correlator (4.21) is replaced with

εhk+h̃k

(e2πLε)hi+h̃i

〈

k; |w| = 1
∣

∣

∣O2(w,w = e2πs)
∣

∣

∣i; |w′| = e−2πL
〉

(4.23)

Notice that the multiplicative scale factors cancel when we multiply the two expressions

together.

The norms in the denominator of eq. (4.19) can be also written in terms of the finite

radius states. We can think of the norms as normalized sphere amplitudes obtained by

gluing each cut-off disk from the original z-sphere with the corresponding cut-off disk from

the w-sphere, as shown in figure 4. From the definition of the metric, eq. (4.8), and the

local gluing relation zw = 1, we may write

〈k|k〉 =
〈

A†
k(w,w = 0)Ak(z, z = 0)

〉

=
〈

k; |w| = 1
∣

∣

∣k; |z| = 1
〉

(4.24)

Since the gluing relation of the prime coordinates is w′z′ = q, we have that

〈i|i〉 = qhiqh̃i

〈

A†′
i (z′, z′ = 0)A′

i(w
′, w′ = 0)

〉

= qhiqh̃i

〈

i; |z′| = e−2πL
∣

∣

∣i; |w′| = e−2πL
〉

(4.25)

To obtain the last equation, we rescale from the coordinate z′ to z̃ = z′/q so that w′z̃ = 1.

The factors of qhiqh̃i transform the operator at z′, z′ = 0 to the z̃-frame. We see that when

the norm 〈i|i〉 is expressed as an inner product between finite radius states at |z′| = e−2πL

and |w′| = e−2πL, the relative factor appearing cancels the factors of qhiqh̃i in the numerator

of eq. (4.19).
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Therefore we can replace the r.h.s. of eq. (4.19) with

(qq)−c/24
∑

i

∑

k

〈

i; |z′| = e−2πL
∣

∣

∣
O1(z, z = e2πs)

∣

∣

∣
k; |z| = 1

〉

annulus

〈i; |z′| = e−2πL|i; |w′| = e−2πL〉〈k; |w| = 1|k; |z| = 1〉

×
〈

k; |w| = 1
∣

∣

∣
O2(w,w = e2πs)

∣

∣

∣
i; |w′| = e−2πL

〉

annulus
(4.26)

=
∑

i

∑

k

〈i;x = iL|O[x]
1 (x = is)|k;x = 0〉cyl〈k;x = 0|O[x]

2 (x = −is)
∣

∣

∣
i;x = −iL〉cyl

〈i;x = −iL|i;x = −iL〉〈k;x = 0|k;x = 0〉

In the second line, we express the equation in terms of cylinder amplitudes described by

coordinates x, x̄ (z = e−2πix, w = e2πix). The coordinate x will be periodically identified,

x ∼ x + 2iL, to be made compatible with the gluing relations. Notice that the operators

O1 and O2 must be transformed properly under the coordinate change. The power of

(qq̄)−c/24 in the first line is absorbed in the change in the overall normalization of the

partition function under the change of coordinates from annulus to cylinder, which follows

from the constant shift in the Hamiltonian: Hcyl = L0 + L̃0 − (c + c̃)/24.

The first gluing of the two annuli along circle |z| = |w| = 1, using zw = 1, gives a

single annulus or equivalently a cylinder of length 2L, and is accompanied with a sum over

a complete set of states |k〉 on the unit circle. Thus (4.27) can now be written as

(qq)−c/24
∑

i

〈

i; |z′| = e−2πL
∣

∣

∣
O1(z, z = e2πs)O2(w,w = e2πs)

∣

∣

∣
i; |w′| = e−2πL

〉

annulus
〈

i; |z′| = e−2πL
∣

∣

∣i; |w′| = e−2πL
〉

sph

=
∑

i

〈

i;x = iL
∣

∣

∣O[x]
1 (x = is)O[x]

2 (x = −is)
∣

∣

∣i;x = −iL
〉

cylinder
〈

i;x = −iL
∣

∣

∣i;x = −iL
〉 (4.27)

We emphasize that the numerator in the first line is an annulus transition amplitude and

the denominator is a sphere amplitude. The final gluing identifies the inner and outer radii

of the annulus, at |w′| = e−2πL and |z′| = e−2πL, through z′w′ = e−4πL, or equivalently the

ends of the cylinder by x ∼ x + 2iL, to produce the torus with τ = 2iL. Then the final

sum over states in (4.27) allows us to express it as a trace, or equivalently as the torus

two-point function
〈

O1(z, z = e2πs)O2(w,w = e2πs)
〉

T 2 .

It is useful to rewrite eq. (4.27) more geometrically ( see figure 4 ) in order to exhibit

its coordinate independence

〈O1(p1)O2(p2)〉T 2 =
∑

i,k

〈i;CL
2 |O1(p1)|k;CL

1 〉〈k;CR
1 |O2(p2)|i;CR

2 〉
〈i;CL

2 |i;CR
2 〉〈k;CR

1 |k;CL
1 〉

=
∑

i,k

〈O1(p1)A†
i (C

L
2 )Ak(C

L
1 )〉〈O2(p2)Ai(C

R
2 )A†

k(C
R
1 )〉

〈A†
i (C

L
2 )Ai(CR

2 )〉〈A†
k(C

L
1 )Ak(C

R
2 )〉

(4.28)

In the final line we have expressed the factorization in terms of operators which create

states on finite size circles. The action of these operators on the vacuum is defined in terms
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of the radial evolution of states created by local operators. For example Ak(|z| = 1)|0〉 ≡
|k; |z| = 1〉, where the the operator Ak(|z| = 1) can be viewed as creating a state at finite

radius. Macroscopic loop operators are discussed in CFT and 2D gravity in [42]. The final

line of (4.28) is identical to the r.h.s. of (3.9).

We have presented the factorization equation in terms of the gluing of two annuli. It

is instructive to view it conversely in terms of the cutting of the torus. Start with a path

integral on a torus, expressed in terms of a generic set of fields φ

〈O1(p1)O2(p2)〉G=1 =

∫

[dφ]e−S(φ)O1(p1)O2(p2) (4.29)

Now we cut along two circles denoted by C1 and C2 to get two cylinders. These cylinders

can be conformally mapped to the annuli in figure 3. The fields on the left and right are

denoted by φL and φR. The boundary values on the circles are written as φb1 , φb2 . Hence

the correlator can be written as

〈O1(p1)O2(p2)〉G=1 =

∫

[dφb1 ][dφb2 ]

∫

[dφL]|φb2
φb1

e−S(φL)O1(p1)

∫

[dφR]|φb2
φb1

e−S(φR)O2(p2)

(4.30)

The fields φL and φR are integrated subject to boundary conditions φb1 , φb2 at the circles

C1, C2. Each of the left/right path integrals give rise to wavefunctionals of fields on these

circles that are correlated by the insertions of the local operators. Using the correspon-

dence between wavefunctionals and Hilbert space states, the integrals
∫

dφb1

∫

dφb2 can be

replaced by sums over states. These are the states summed over in eqs. (4.28), (4.27). These

cutting and gluing relations appear in their simplest form in topological field theories, see

for example [43, 44].

4.4.3 Reflection positivity

Consider again putting O2 at w,w = e2πs in eq. (4.19), which corresponds to z, z = e−2πs

since z and w are glued with zw = 1, and choose now O1 to be its conjugate at z, z = e2πs.

Then eq. (4.19) becomes

〈

O†
2(z, z = e2πs)O2(w,w = e2πs)

〉

T 2

=(qq̄)−c/24
∑

i

∑

k

qhiqh̃i
1

〈i|i〉〈k|k〉
〈

O†
2(z, z = e2πs)A†′

i (z′, z′ = 0)Ak(z, z = 0)
〉

S2

×
〈

A†
k(w,w = 0)A′

i(w
′, w′ = 0)O2(w,w = e2πs)

〉

S2

=(qq̄)−c/24
∑

i

∑

k

qhiqh̃i

∣

∣

∣

〈

O†
2(z, z = e2πs)A†′

i (z′, z′ = 0)Ak(z, z = 0)
〉

S2

∣

∣

∣

2

〈i|i〉〈k|k〉 (4.31)

Finally note that the set {Ai} contains all local operators of the theory. If A(z, z) is an

operator in this set, then so is A†(z, z). The two have the same weights and norm with
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respect to the metric Gij defined in (4.8). Thus we can also write the formula above as
〈

O†(z, z = e2πs)O(w,w = e2πs)
〉

T 2

= (qq̄)−c/24
∑

i

∑

k

qhiqh̃i

∣

∣

〈

O†(z, z = e2πs)A′
i(z

′, z′ = 0)Ak(z, z = 0)
〉

S2

∣

∣

2

〈i|i〉〈k|k〉 (4.32)

If the modular parameter τ is purely imaginary, so that q is real and positive, then each

and every summand is real and positive. This demonstrates reflection positivity for the

torus. Because every summand is real and positive we can discard some of the intermediate

states in the sum to get an inequality with the left-hand side larger than the right-hand side.

In the case of the matrix CFT, we choose to keep only states that are totally holomorphic

or totally antiholomorphic. Furthermore we throw away all states except those with first

derivatives ∂Z and ∂Z†. We only keep gauge-invariant polynomials in these fields, which

can be written as Schur polynomials. These are diagonal
〈

χR(∂Z†)χS(∂Z)
〉

∝ δRS (4.33)

4.5 Probabilities and inequalities in 2D

We will now do some specific checks of the factorization equation (4.32). We keep gauge-

invariant products of the primary field ∂Z in the sum only. We choose to work in the Schur

polynomial basis χR(∂Z(z)) for which the metric is diagonal. We will obtain an inequality

with the position dependences and torus moduli appearing explicitly.

In the following we will write R(z) for χR(∂Z(z)) and R†(z) for χR(∂Z†(z)). By the

analysis above, we get an inequality for the torus correlator of the form

(qq̄)c/24
〈

R†(z = e2πs)R(w = e2πs)
〉

T 2,τ

>
∑

R1,R2

e−4πL∆1

〈

R†(z = e2πs)R′
1(z

′ = 0)R2(z = 0)
〉 〈

R†
2(w = 0)R†′

1 (w′ = 0)R(w = e2πs)
〉

〈R1|R1〉〈R2|R2〉
(4.34)

where ∆1 is the conformal dimension of the operator R1, and q = e2πiτ = e−4πL since

τ = 2iL. We denote the conformal dimension of R2 by ∆2. In order for the pair of

operators R1 and R2 to contribute, ∆1 +∆2 = ∆R where ∆R is the conformal dimension of

R. To check this inequality explicitly, we must work out all the individual terms appearing

in the inequality. Note that the left hand side is an unnormalized correlator, given by the

insertion of operators in the path integral, without dividing by the torus partition function.

The right hand side is insensitive to the normalization of the sphere correlators, so we will

set the sphere normalization factor to 1 in the following.

4.5.1 The metric on the Schur polynomials

We follow conventions so that for a single real scalar field, the 2-point function of its

holomorphic derivatives on the sphere is given by

〈∂X(z1)∂X(z2)〉S2 = − 1

(z1 − z2)2
(4.35)
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and similarly for a single complex scalar field Z:

〈∂Z(z1)∂Z(z2)〉S2 = − 1

(z1 − z2)2
(4.36)

Then the Schur polynomials satisfy

〈

χR(∂Z†(z1))χS(∂Z(z2))
〉

S2
= δRSfR

(−1)∆R

(z1 − z2)2∆R
(4.37)

where fR is defined by

fR =
DimR∆R!

dR
(4.38)

In this expression, DimR is the dimension of the U(N) representation R and dR is the

dimension of the symmetric group S∆R
representation R. To derive this 2-point function,

we repeat all the steps of the corresponding four dimensional computation of [8], but noting

that now each field contraction will give a factor of the propagator (4.36). The relevant

color combinatorics are the same as in the case of [8].

Using eq. (4.37), we can compute the diagonal elements of the metric given by

〈Ri|Ri〉 =
〈

R†′
i (z′ = 0)Ri(z = 0)

〉

S2
(4.39)

Changing the coordinate of R†′
i to z using z′z = 1, and remembering that it is a primary

field, we get

〈Ri|Ri〉 = lim
z0→∞

〈

(−z2
0)∆iR†

i (z = z0)Ri(z = 0)
〉

= lim
z0→∞

[

(−z2
0)∆i(−1)∆ifRi

(0 − z0)2∆i

]

= fRi (4.40)

4.5.2 Three point function calculations

We want to work out
〈

R†(z = e2πs)R′
1(z

′ = 0)R2(z = 0)
〉

S2
(4.41)

which we will do by changing the coordinate of R†′
1 to z via zz′ = 1, and using the general

formula of [8]

〈

R†(z)R1(z1)R2(z2)
〉

= g(R1, R2;R)fR
(−1)∆1+∆2

(z1 − z)2∆1(z2 − z)2∆2
(4.42)

We get
〈

R†(z = e2πs)R′
1(z

′ = 0)R2(z = 0)
〉

= lim
z0→∞

〈

R†(z = e2πs)(−z2
0)∆1R1(z = z0)R2(z = 0)

〉

= lim
z0→∞

[

(−z2
0)

∆1(−1)∆1+∆2g(R1, R2;R)fR

(e2πs − z0)2∆1(e2πs − 0)2∆2

]

=g(R1, R2;R)fR(−1)∆2e−4πs∆2 (4.43)
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Here, g(R1, R2;R) is the group theoretic LR coefficient associated with the three repre-

sentations R1, R2 and R of U(N). For the other 3-point correlator we obtain the same

result:
〈

R†
2(w = 0)R†′

1 (w′ = 0)R(w = e2πs)
〉

S2
= g(R1, R2;R)fR(−1)∆2e−4πs∆2 (4.44)

4.5.3 The torus two point function

The torus Green’s function in complex x coordinates, such that x ∼ x+1 ∼ x+ τ , is given

by

G′(x, x; y, y) = − log |θ1 (x − y; τ)|2 +
2π

τ2
[Im(x − y)]2 (4.45)

where θ1 is a theta function.5 For a single complex field, this implies

Z−1
T 2

〈

∂xZ†(x)∂yZ(y)
〉

T 2
= −Z−1

T 2 ∂2
x

〈

Z†(x)Z(y)
〉

T 2

= ∂2
x (log ϑ11 (x − y; τ)) − 2π

τ2
= −℘ (x − y; τ) (4.46)

where ℘ is the Weierstrass elliptic function. The factor of ZT 2 , the torus partition func-

tion, appears because the Weierstrass function is the normalized correlator. Notice that

factorization produces the un-normalized torus path integrals. Transforming to z = e−2πix

and w = e2πiy coordinates, we also have that

〈

∂zZ
†(z)∂wZ(w)

〉

T 2
=

1

(−2πiz)

1

(2πiw)

〈

∂xZ†(x)∂yZ(y)
〉

T 2
(4.47)

We are interested in the two point function for which the operators are inserted at

x = is (z = e2πs) and y = −is (w = e2πs), with τ = 2iL–see figure 5. So we obtain that

Z−1
T 2

〈

∂zZ
†(z = e2πs)∂wZ(w = e2πs)

〉

T 2
=

e−4πs

(2π)2
Z−1

T 2

〈

∂xZ†(x = is)∂yZ(y = −is)
〉

T 2

= − 1

(2π)2
e−4πs℘ (2is; 2iL) ≡ Γ(is,−is) (4.48)

where we introduced the notation Γ(is,−is) for brevity. The function −℘ (2is; 2iL) is

positive for all real values of s, as expected from the property of reflection positivity.

We can check that (4.48) leads to the correct pole structure in the limit of small s.

Using the expansion of the Weierstrass elliptic function (4.46) for small x − y = 2is and

τ = 2iL, we obtain

Γ(is,−is) = − 1

(2π)2
e−4πs℘ (2is; 2iL)

= − 1

(2π)2
e−4πs





1

−4s2
+

∑

m,n∈Z:m,n 6=0

{

1

(2is + n + 2miL)2
− 1

(n + 2miL)2

}





' 1

16π2s2
(4.49)

5α′ has been set equal to 2 in the corresponding formula of [37].
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is
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��
(x) = −L

��
(x) = L

Figure 5: The torus correlator obtained after gluing

The same result can be obtained from the sphere 2-point function, eq. (4.36), for z1 =

e−2πis, z2 = e2πis in the limit s → 0. The pole structure is dictated by the operator

product expansion.

Now we can compute the torus 2-point function of the Schur polynomial R. The color

combinatorics are the same as in the sphere-case. Each field contraction gives a factor of

Γ(is,−is). The number of such contractions is set by the (integer) conformal dimension of

R. So we obtain
〈

R†(z = e2πs)R(w = e2πs)
〉

T 2
= ZT 2Γ(is,−is)∆RfR (4.50)

4.5.4 The inequality

If we insert into (4.34) all the elements, the inequality becomes

ZT 2Γ(is,−is)∆RfR > (qq̄)−c/24
∑

R1,R2

e−4πL∆1
e−8πs∆2g(R1, R2;R)2f2

R

fR1fR2

(4.51)

In terms of the Weierstrass elliptic function, we obtain
(

− 1

(2π)2
℘ (2is; 2iL)

)∆R

>
(qq̄)−c/24

ZT 2

∑

R1,R2

e−4πL∆1+4πs(∆1−∆2) g(R1, R2;R)2fR

fR1fR2

(4.52)

In the strict large L limit, the factor (qq̄)−c/24

ZT2
is equal to one because only the state corre-

sponding to the unit operator contributes to the partition sum.6 At finite L it is smaller

than one and makes the inequality easier to satisfy. If we embed the Matrix CFT in a su-

persymmetric theory and use periodic boundary conditions for the fermions in the gluing

process, this extra factor is exactly one (assuming that the ground state is unique). Hence

in general we expect the stronger inequality
(

− 1

(2π)2
℘ (2is; 2iL)

)∆R

>
∑

R1,R2

e−4πL∆1+4πs(∆1−∆2) g(R1, R2;R)2fR

fR1fR2

(4.53)

6We can gap non-zero momentum and winding states by considering a compact version of the CFT.
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Figure 6: A plot of −℘ (2is; 2iL) against s with L = 1

to be valid, although our main interest is at large L.

We can now do various checks of the inequality (4.53). If we further restrict to inter-

mediate operators for which ∆1 = ∆2 = ∆ (∆ = ∆R/2), we get

(

− 1

(2π)2
℘ (2is; 2iL)

)2∆

> e−4π∆L
∑

R1,R2

g(R1, R2;R)2fR

fR1fR2

(4.54)

where the r.h.s. is now a constant as a function of s. The function −℘ (2is; 2iL) is a real,

positive function of s which is periodic. The period is L with respect to s (or 2L with

respect to the separation of the two operator insertions, 2s). In each period this function

reaches a minimum at the middle of its period. Thus the l.h.s. of the inequality reaches a

minimum at s = L/2 (see figure 6). At this point we have

−℘(iL; 2iL) = π2

(

4
∑

n>0

{coth(2nπL)cosech(2nπL)} +
1

3

)

(4.55)

For this and other limits of the Weierstrass elliptic function see appendix E.

This means that the inequality will be true for all s provided that

(

∑

n>0

{coth(2nπL)cosech(2nπL)} +
1

12

)2∆

> e−4π∆L
∑

R1,R2

g(R1, R2;R)2fR

fR1fR2

(4.56)

We can see how this is satisfied for all values of L. For large L, the l.h.s. tends to (1/12)2∆

which will be much bigger than e−4π∆L. For small L the hyperbolic functions coth(2nπL)

and cosech(2nπL) both blow up.

We will now check our result for the transition from a size N AdS giant, a single-

row representation written R = [N ], to two smaller AdS giants, R1, R2 = [N/2], so that
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Figure 7: A plot of of the logarithms of the l.h.s. of (4.56) (top) against (4.57) (bottom) against

L for our chosen representations. We have in fact taken the Nth root of each side. We can ignore

the 3/
√

8 factor in (4.57) because it adds a small constant to the lower graph which does not affect

the inequality for any value of N .

∆ = N/2. Then the r.h.s. of (4.56) is given by

f[N ]

f2
[N/2]

e−2πNL =
(2N − 1)!(N − 1)!

((3N/2 − 1)!)2 e−2πNL

∼ 3√
8

(

32

27

)N

e−2πNL( 1 + O(1/N) ) (4.57)

In figure 7, the l.h.s. of (4.56) is plotted against (4.57), for the specific Schur polynomials

chosen, as a function of L to verify that the inequality holds for all L and N .

For ∆1 6= ∆2 the s-dependence of the r.h.s. of (4.53) is no longer trivial. Some

numerical checks of the inequality have been made for this situation.

4.5.5 Probability interpretation in the large L, N limits

We can now obtain a well defined probability for a transition to occur, from a state of

charge N , created by the operator χ[N ](∂Z), to two states of charge N/2 each created by

the operator χ[N/2](∂Z) in the large L and N limits.

The large L limit is the appropriate limit. The discussion in section 4.4.1, of gluing at

two punctures, should be related to the limit in moduli space where τ = 2iL and L → ∞.

This can be seen as follows. Consider a sphere with disks of radii e−2πr1 , e−2πr2 removed

near the N and S poles. The region from the equator to the first disk is mapped to a

cylinder of radius one and length r1 using the exponential map z = e−2iπx. The region

from the equator to the second disk is mapped to a cylinder of radius 1 and length r2 by

the map z′ = e−i2πy. Hence we have a cylinder with radius 1 and length r1 +r2. When this

is glued to another similar cylinder of unit radius and size r1 + r2, we get a torus with τ

parameter 2i(r1 + r2). As the disks reach zero size in the limit r1, r2 → ∞, we get a torus

with τ → i∞.
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Because the l.h.s. of (4.53) approaches a constant for large L, the probability is given

by

P ([N ] → [N/2], [N/2]) ∼ 3√
8

exp {(−2πL + log(32/27) + log 12)N} (4.58)

which is less than 1 because L is taken large. We have used (4.57), which computes the

contribution to the r.h.s. for this particular process. Notice that the factor L governs the

spatial separation of the states on the cylinder.

4.6 Miscellaneous comments

4.6.1 Zero coupling gauge theory v/s unconstrained free fields

The two dimensional Matrix CFT we are considering is invariant under global U(N) trans-

formations. The symmetry imposes restrictions on the type of internal states that con-

tribute in factorization relations.

Suppose that the external states in a factorization equation are invariant under global

U(N) transformations:

Qa|A〉 = 0, Qa|B〉 = 0 (4.59)

where the operators Qa denote the generators of U(N) transformations. These satisfy

[Qa, Qb] = ifabcQc, with fabc the U(N) Lie algebra structure constants. Consider the

overlap

〈B|U(t1, t2)|A〉 (4.60)

where U(t1, t2) is the time (radial) evolution operator. The Hamiltonian (dilatation oper-

ator) is invariant under global U(N) transformations so that [Qa, U ] = 0. Now we insert

a complete set of orthonormal states at time t′ (or radius r′), which can be taken to be

eigenstates of the mutually commuting Cartan generators, to obtain a factorization relation

〈B|U(t1, t2)|A〉 =
∑

C

〈B|U(t1, t
′)|C〉〈C|U(t′, t2)|A〉 (4.61)

Then the intermediate states |C〉 must also be invariant under global U(N) transformations.

We can argue for this as follows:

〈B|U(t1, t
′)|C〉 = 〈B|

(

eiαaQaU(t1, t
′)e−iαaQa

)

|C〉
=

(

〈B|eiαaQa
)

U(t1, t
′)

(

e−iαaQa|C〉
)

= 〈B|U(t1, t
′)|C〉e−iαaqa (4.62)

where the vector qa denotes the charges of the state |C〉. Since the above must hold for

arbitrary αa, it is clear that only intermediate states with qa = 0 contribute. Therefore, the

operator corresponding to |C〉 must also be invariant. So only U(N) invariant operators

contribute in the genus zero factorization. If we consider a factorization equation of a

genus-1 correlator such as eq. (3.9), then the symmetry implies that the net charge of the

internal operators B1 and B2 contributing must add to zero, assuming that the external

operators are invariant.

If a theory has a local gauge symmetry, such as the four dimensional N = 4 Super

Yang Mills theory we are interested in, then there are further constraints on the types of

– 27 –



J
H
E
P
0
3
(
2
0
0
7
)
0
7
2

internal operators contributing in factorization equations. Consider for example correlators

of local gauge invariant operators of the N = 4 theory on the S3 × S1 manifold. Suppose

we factorize such higher genus correlators in terms of correlators of local operators on S4.

Invariance of the theory under local gauge transformations implies that in order for the

internal local operators and to contribute, each must be a local gauge invariant operator.

The considerations above address the following puzzle. Consider the N = 4 Super Yang

Mills theory on S3 ×S1 in the limit of vanishing coupling constant. Even in this limit, the

zero mode of A0 on the sphere does not decouple from matter fields, and because of the non-

trivial topology of the manifold, it cannot be gauged away. The relevant gauge invariant

quantity is the Wilson line of A0 around the S1 circle. As a consequence, thermal two point

functions of local gauge invariant operators composed of adjoint scalars are different from

the two point functions of the same operators in a theory with unconstrained, free scalar

fields only–see [45]. This difference is also reflected in factorization equations in terms of

local operators: in the zero coupling gauge theory, each of the internal local operators must

be a local gauge invariant operator to contribute, while in the unconstrained free scalar

theory only the net charge of the operators has to vanish. We expect that correlators of

local gauge invariant operators in the two theories should agree in the limit of large radius

for the S1 circle. When the circle becomes uncompact, A0 can be gauged away. This

was discussed, in the case of large N in [45]. In addition, it was argued in [45] that to

leading order in 1/N , non-renormalization theorems protecting the two point and three

point functions of 1/2 BPS operators against ’t Hooft coupling corrections survive in the

low temperature phase of the theory. The large N and large radius limits are the relevant

limits for our computations in section 5.6.

4.6.2 Windings from torus factorization sums

If our intermediate states A′
i and Aj appearing in the factorization equation differ in their

holomorphicity, then we can interpret some of the summands in the torus factorization as

paths winding around a non-trivial cycle in the torus. For example, when A′
i(z

′, z̄′ = 0) =

∂Z†′(z′, z̄′ = 0) and Ak(z, z̄ = 0) =: ∂Z(z, z̄ = 0)∂Z(z, z̄ = 0) :, we obtain a path with

winding number 1. See the appendix section F for a detailed discussion.

5. Factorization in the 4D CFT

5.1 Introduction

The factorization arguments described in the previous section extend naturally to conformal

field theories in four dimensions. To obtain sphere factorization identities, we glue together

two S4s around one puncture to produce a single S4. To obtain genus-1 factorization

identities, we glue together two S4s at two punctures to get a genus-1 surface which is

conformally equivalent to the S1 × S3 manifold. The argument for the factorization of the

correlation functions in the 3+1-dimensional CFT follows from the path integral discussion

in section 4.4.2. In the sum over intermediate states we keep only the Schur polynomials

in a single complex scalar Φ.
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5.2 Metric

In order to define a positive metric on the space of operators, we choose the scalar 2-point

function on R
4 to satisfy the convention

∆xG(x − y) = −δ4(x − y) (5.1)

This gives

G(x − y) =
1

4π2|x − y|2 (5.2)

The metric on the space of Schur polynomials is given by
〈

R†′(r′ = 0)R(r = 0)
〉

(5.3)

where r′ = 1/r. To compute the correlator, we map R†′ back to the r-coordinate frame.

Under the coordinate transformation r′ → r = 1/r′, the metric changes as follows

dr′2 + r′2dΩ2 → 1

r4
(dr2 + r2dΩ2) (5.4)

and so the primary fields transform as

Φ′(x′) → Ω(x)−∆/2Φ(x) = r2∆Φ(x) (5.5)

where Ω(x) = 1/r4 is the conformal factor [36]. Thus for the metric element we obtain
〈

R†′(r′ = 0)R(r = 0)
〉

= lim
r0→∞

〈

r2∆
0 R†(r = r0)R(r = 0)

〉

=

(

1

4π2

)∆

fR (5.6)

5.3 The genus zero factorization in four dimensions

Following the two dimensional example, we start with two 4-spheres, one with coordinates

(r,Ωi) and the other with coordinates (s,Ω′
i). Next we cut out a 4-ball of unit radius

around the origin in each, and glue them together using rs = 1. The factorization identity

implies an inequality given by
〈

R†
1(s = ex1) · · ·R†

k(s = exk)Rk(r = exk) · · ·R1(r = ex1)
〉

>
∑

R

〈

R†
1(s = ex1) · · ·R†

k(s = exk)R(r = 0)
〉〈

R†(s = 0)Rk(r = exk) · · ·R1(r = ex1)
〉

〈

R†R
〉

(5.7)

where we set xj > 0 for j = 1, . . . , k so that the operator insertions are outside the cut-off

region. We have suppressed the angular coordinates of the operators Rj in (5.7), but these

can be arbitrary in general.

In general the correlator on the l.h.s. of the inequality is not extremal, so it may have

a non-trivial dependence on the ’t Hooft coupling constant. To avoid this complication, we

do our calculations in the limit that the correlator becomes extremal, i.e. when x1 = x2 =

· · · = xk.

In the large separations limit, xj → ∞, we recover the combinatorial factorization

identities discussed in [17].
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5.4 The genus one factorization in four dimensions

We parameterize four dimensional flat space R
4 with spherical coordinates so that the

metric is given by

ds2 = dr2 + r2dΩ2
3 (5.8)

This metric is conformal to the standard metric on S3 × R under the coordinate transfor-

mation r = eτ :

ds2 = e2τ (dτ2 + dΩ2
3) (5.9)

In the two dimensional example, we started with two copies of S1 × I described by

coordinates 1 ≤ |z| ≤ e2πL and 1 ≤ |w| ≤ e2πL. In the four dimensional case, we start with

two cylinders S3 × I described by coordinates (r,Ωi) and (s,Ω′
i) with the radial variables

in the range

1 ≤ r ≤ eT

1 ≤ s ≤ eT (5.10)

In most of the following expressions, we suppress the angular dependence since the angles,

in all of the gluings, are identified trivially.

Introduce also the coordinates r′ = 1/r and s′ = 1/s. We now glue the two cylinders

S3 × I at the inner ends r = 1, s = 1 with rs = 1. We then glue the outer ends at r = eT ,

s = eT with r′s′ = e−2T (i.e. rs = e2T ). The gluing produces an S3 × S1 manifold with

τ ∼ τ + 2T .7

5.5 The genus one factorization and inequality

The derivation of factorization of correlators on genus-1 surfaces in two dimensions uses

basic features of CFT, such as the operator-state correspondence and properties of the

path integral representation of correlators. The same steps can be run through in four

dimensions. Now we are looking at correlators on Σ4(G = 1), which is obtained by gluing

two copies of S3 × I, each obtained by cutting out the neighborhoods of two points in an

S4 manifold. We obtain

〈R†(P1)R(P2)〉G=1 =
∑

i,j

〈R†(P1)A†
i (C

L
2 )Ak(C

L
1 )〉〈A†

k(CR
1 )Ai(C

R
2 )R(P2)〉

〈A†
i (C

L
2 )Ai(CR

2 )〉〈A†
k(C

L
1 )Ak(C

R
1 )〉

(5.11)

The surfaces CL
i and CR

i are now 3-spheres. Eq. (5.11) is the 4d analog of eq. (4.28). By

scaling, we can express the r.h.s. in terms of correlators of local operators on R
4

〈R†(r = ex,Ωi)R(s = ex,Ωi)〉 (5.12)

= Z0

∑

i,j

e−2T∆i
〈R†(r = ex,Ωi)A†′

i (r′ = 0)Ak(r = 0)〉〈A†
k(s = 0)A′

i(s
′ = 0)R(s = ex,Ωi)〉

〈i|i〉〈k|k〉

7In our notation, 2T stands for the inverse temperature with regards to the thermal theory on S3 × S1.

We hope that the notation does not cause confusion to the reader.
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This is the 4d analog of eq. (4.18). Z0 is the large T limit of the Euclidean partition

function on S3 × S1, analogous to the (qq̄)−c/24 term in two dimensions. It depends only

on the Casimir energy of the ground state. We will not need it explicitly. In going from a

path integral expression to an operator expression, we must specify a time-ordering. We

specialize to the case where P2 and P1 are related by Euclidean time reversal so that we

can expect positivity of the r.h.s. of the equations above. We will further restrict the sum

to the case where A†
i and Ak are given respectively by the Schur Polynomials χR1(Φ) and

χR2(Φ). By checking the resulting inequality, we will obtain well-behaved probabilities.

We want to demonstrate the inequality

〈R†(s = ex,Ωi)R(r = ex,Ωi)〉G=1 (5.13)

> Z0

∑

R1,R2

e−2T∆1
〈R†(r = ex,Ωi)R

′
1(r

′ = 0)R2(r = 0)〉 〈R†
2(s = 0)R†′

1 (s′ = 0)R(s = ex,Ωi)〉
〈R†

1R1〉 〈R†
2R2〉

We work out the first three-point function to get

〈R†(r = ex,Ωi)R
′
1(r

′ = 0)R2(r = 0)〉 = lim
r0→∞

〈R†(r = ex,Ωi)r
2∆1
0 R1(r = r0)R2(r = 0)〉

= (4π2)−∆1−∆2e−2x∆2g(R1, R2;R)fR (5.14)

Similarly for the second correlator we get

〈R†
2(s = 0)R†′

1 (s′ = 0)R(s = ex,Ωi)〉 = (4π2)−∆1−∆2e−2x∆2g(R1, R2;R)fR (5.15)

Hence the right-hand side of the inequality (5.15) becomes

∑

R1,R2

(4π2)−∆1−∆2
g(R1, R2;R)2f2

R

fR1fR2

e−2T∆1e−4x∆2 (5.16)

Because of charge conservation, the only terms contributing to the r.h.s. are those for which

∆1 + ∆2 = ∆R, where ∆R is the conformal dimension of the Schur operator R.

5.6 The correlator on S3 × S1

Let the metric on S3 × S1 be given by

ds2 = dτ2 + dχ2 + sin2 χ(dθ2 + sin2 θdφ2) (5.17)

where τ ∈ [0, 2T ], χ, θ ∈ [0, π] and φ ∈ [0, 2π].

If the differential operator K admits a complete set of eigenvectors Ψn(x) with KΨn =

λnΨn, then the corresponding Green’s function is given by

G(x, y) =
∑

n|λn 6=0

Ψ∗
n(x)Ψn(y)

λn
(5.18)

and it satisfies

KG(x, y) =
∑

n|λn 6=0

Ψ∗
n(x)Ψn(y)

= δ(x − y) −
∑

n|λn=0

Ψ∗
n(x)Ψn(y) (5.19)
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For a conformally coupled scalar field in four dimensions, the differential operator K

is given by

K = ∆ − 1

6
R (5.20)

where ∆ is the Euclidean Laplacian and the second term is the coupling to the 4-dimensional

curvature [46]. It is like a mass term and has the same sign as a positive mass term in a

Euclidean theory. For S1 ×S3 with unit radii, only the curvature of S3 contributes, giving

for the Ricci scalar curvature R = 6. Thus K = ∆ − 1.

On S3 the spherical harmonics are given by [46]

Yk(Ωi) = ΠkJ(χ)Y M
J (θ, φ) (5.21)

where k = (k, J,M), Y M
J are spherical harmonics on S2 and ΠkJ is given by

ΠkJ =

[

1

2
πk2(k2 − 1) · · · (k2 − J2)

]−1/2

sinJ χ

(

d

d cos χ

)1+J

cos kχ (5.22)

The quantum numbers k, J and M lie in the following ranges

k = 1, 2, . . . ,

J = 0, 1, . . . , k − 1

M = −J,−J + 1, . . . , J (5.23)

The harmonics Yk(Ωi) satisfy

∆S3Yk(Ωi) = −(k2 − 1)Yk(Ωi) (5.24)

and they are orthonormal. Spherical harmonics on S1 are given by

hm(τ) = N eimπτ/T (5.25)

where N = (2T )−
1
2 is the normalization factor. They satisfy

∆S1hm = −
(mπ

T

)2
hm (5.26)

Thus if

Ψn = hm(τ)Yk(Ωi) (5.27)

where n = (m,k), then

∆S3×S1Ψn = (∆S3 + ∆S1)Ψn =

[

−(k2 − 1) −
(mπ

T

)2
]

Ψn (5.28)

If we add the conformal coupling term as in (5.20), we get

KΨn = (∆S3×S1 − 1)Ψn =

[

−k2 −
(mπ

T

)2
]

Ψn (5.29)
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This eigenvalue problem has no zero-mode solution. In accordance with the R
4 correla-

tor (5.1), we actually choose the Green’s function to satisfy

KG(x, y) = −δ4(x − y) (5.30)

so that we get a positive metric on the space of operators. So the desired Green’s function

is given by

G(x, y) = −
∑

n

Ψn(x)∗Ψn(y)

λn

=
∑

m,k,J,M

hm(τ)∗Y∗
k
(Ωi)hm(τ ′)Yk(Ω′

i)

k2 +
(

mπ
T

)2 (5.31)

where k, J and M are in the ranges set out in (5.23) and m is an integer.

We want to work out
〈

R†(s = ex)R(r = ex)
〉

G=1
(5.32)

where the angular coordinates are fixed to coincide.

If we change coordinates to s = e−τ , r = eτ , we get
〈

Φ†(s = ex)Φ(r = ex)
〉

G=1
=

1

rs

〈

Φ†(τ = −x)Φ(τ = x)
〉

G=1

= e−2x
〈

Φ†(τ = −x)Φ(τ = x)
〉

G=1
(5.33)

Now insert the Green’s function (5.31) to get

Z−1
G=1

〈

Φ†(τ = −x)Φ(τ = x)
〉

G=1
=

∑

m,k,J,M

hm(0)∗Y∗
k
(Ωi)hm(2x)Yk(Ωi)

k2 +
(

mπ
T

)2 (5.34)

where we put each S3 spherical harmonic at the same point on the S3 and ZG=1 is the

thermal partition function. A clever choice of the angular point simplifies the sum. Let

that point be where χ = 0 so that ΠkJ is zero for J > 0, since the term sinJ χ at the front

of the expression is zero (cos kχ is a polynomial in cos χ so for χ = 0 the derivatives of

cos kχ give a constant). Then the only terms that contribute are those with J = M = 0.

We get

Πk0 =

[

1

2
πk2

]−1/2 d

d cos χ
cos kχ

∣

∣

∣

χ=0

= 21/2π−1/2k (5.35)

Then noting that Y 0
0 (θ, φ) = 2−1(π)−1/2, we get

Γ(−x, x) ≡
〈

Φ†(τ = −x)Φ(τ = x)
〉

G=1

ZG=1
=

∑

m∈Z,k≥1

N 2eim2πx/T 2−1π−2k2

k2 +
(

mπ
T

)2 (5.36)

=
1

4π2T

∑

m∈Z,k≥1

k2eim2πx/T

k2 +
(

mπ
T

)2 =
1

4π2T



2
∑

m>0,k≥1

k2 cos(m2πx/T )

k2 +
(

mπ
T

)2 +
∑

k≥1

k2

k2





where the second term in the last expression is the m = 0 term. When plotted the truncated

sums converge everywhere, except when x is an integer multiple of T .
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5.6.1 The inequality

The computations above lead to the spacetime inequality

e−2x(∆1+∆2)(Γ(−x, x))∆1+∆2fRZG=1

> Z0

(

1

4π2

)∆1+∆2
∑

R1,R2

g(R1, R2;R)2f2
R

fR1fR2

e−2T∆1e−4x∆2 (5.37)

or





1

4π2T



2
∑

m>0,k≥1

k2 cos(m2πx/T )

k2 +
(

mπ
T

)2 +
∑

k≥1

1









∆1+∆2

>
Z0

ZG=1

(

1

4π2

)∆1+∆2
∑

R1,R2

g(R1, R2;R)2fR

fR1fR2

e−2T∆1+2x(∆1−∆2) (5.38)

After canceling the 4π2 constants, we obtain





1

T



2
∑

m>0,k≥1

k2 cos(m2πx/T )

k2 +
(

mπ
T

)2 +
∑

k≥1

1









∆1+∆2

>
Z0

ZG=1

∑

R1,R2

g(R1, R2;R)2fR

fR1fR2

e−2T∆1+2x(∆1−∆2) (5.39)

This expression is very similar to the S1 ×S1 inequality. Note however that the l.h.s. does

not have the analog of the (1/12) term of eq. (4.56), since the zero mode has been lifted

by the conformal mass term.

As in the 2d case, in the large T limit, the factor Z0
ZG=1

tends to 1. For the case of the

thermal partition function, we have Z0
ZG=1

< 1 in general.8 If we perform the gluing with

periodic boundary conditions for the fermions this factor will be 1 , also just like the 2d

case. Hence we expect the stronger inequality





1

T



2
∑

m>0,k≥1

k2 cos(m2πx/T )

k2 +
(

mπ
T

)2 +
∑

k≥1

1









∆1+∆2

>
∑

R1,R2

g(R1, R2;R)2fR

fR1fR2

e−2T∆1+2x(∆1−∆2) (5.40)

to hold, although again our main interest in this paper is at large T .

For ∆1 = ∆2 = ∆ the x dependence of the r.h.s. vanishes, so it is sufficient to check

the inequality at the minimum of the l.h.s. . This minimum occurs at x = 1
2T , i.e. where

8For a comprehensive discussion of the thermal partition function of the N = 4 Super Yang Mills theory

on S3 see [47]. For supersymmetric partition sums involving BPS states see [48].
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the points are at maximum separation on the S1. At this point, we have

1

T



2
∑

m>0,k≥1

k2 cos(mπ)

k2 +
(

mπ
T

)2 +
∑

k≥1

1



 =
1

T



2
∑

m>0,k≥1

k2(−1)m

k2 +
(

mπ
T

)2 +
∑

k≥1

1





=
1

T

∑

k≥1

[(−1 + kT cosech(kT )) + 1]

=
∑

k≥1

kcosech(kT ) (5.41)

The sum above is convergent. Thus the inequality becomes




∑

k≥1

kcosech(kT )





2∆

>
∑

R1,R2

g(R1, R2;R)2fR

fR1fR2

e−2T∆ (5.42)

For small T the inequality holds because the r.h.s. is constant and the sum in the l.h.s.

blows up. For large T we can approximate the sum (5.41) by only taking the first term in

the sum and noticing that in this limit

cosech(T ) → 2e−T (5.43)

For R = [N ], ∆1 = ∆2 = N/2, R1, R2 = [N/2], the r.h.s. of (5.42) is given by

f[N ]

f2
[N/2]

e−TN =
(2N − 1)!(N − 1)!

((3N/2 − 1)!)2
e−TN

∼ 3√
8

(

32

27

)N

e−TN (5.44)

For large T and our choice of R the inequality becomes

2Ne−NT >
3√
8

(

32

27

)N

e−TN (5.45)

which is satisfied.

In figure 8, the l.h.s. of (5.42) is plotted against the r.h.s. of (5.42), for our choice of

Schur polynomials, as a function of T , to verify that the inequality holds for all T . For

large T , as expected the graphs are separated by a constant value log(27/16).

5.7 Probability interpretation in the large T limit

We can now obtain a well-defined probability for a transition. We take the limit T → ∞
and fix x = 1

2T so that the operators are as far apart from each other as they can be.

In this limit we find for general R, R1 and R2

P (R → R1, R2) =
1

(2e−T )∆1+∆2

g(R1, R2;R)2fR

fR1fR2

e−T (∆1+∆2)

=
1

2∆1+∆2

g(R1, R2;R)2fR

fR1fR2

(5.46)

where we have used the approximation (5.43) for the large T limit of the genus-1 correlator.

This probability is independent both of the spacetime positions of the operators and of T .
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Figure 8: A plot of of the logarithms of the l.h.s. of (5.42) (top) against the r.h.s. of(5.42) (bottom)

against T for our chosen representations. We have in fact taken the Nth root of each side. We can

ignore the 3/
√

8 factor on the r.h.s. because it adds a small constant to the lower graph which does

not affect the inequality for any value of N .

6. Results for probabilities

The calculations done here are given in the appendix G.

6.1 G = 0 factorization

For the amplitude of several operators combining into a bigger operator we use genus

zero factorization. The correlators are computed on R
4 and the results for probabilities

are invariant under the conformal transformation to S4. In a large distance limit, the

resulting normalization prescription is equivalent to the overlap of states normalization we

näıvely used before. These sphere factorization relations are equivalent to the factorization

equations derived in [17]. The gluing procedure is as in section 5.3. For example, the

probability for two “in” states to evolve to a single “out” state is given by

P (R1(r = ex,Ωi), R2(r = ey,Ωi) → R(r = 0))

=

∣

∣

∣

〈

R†
1(r = ex,Ωi)R

†
2(r = ey,Ωi)R(r = 0)

〉

∣

∣

∣

2

〈

R†
2(s = ey,Ωi)R

†
1(s = ex,Ωi)R1(r = ex,Ωi)R2(r = ey,Ωi)

〉〈

R†R
〉

(6.1)

In our calculations we put R1 and R2 at the same position x = y so that the normalization

factor in the denominator is an extremal correlator. The results will then be valid beyond

the zero coupling limit g2
YM = 0, where the actual computations are done. If we separate

them in spacetime, then we have a non-extremal correlator in the denominator which can be

computed at zero coupling, but which will receive non-trivial corrections at finite coupling.

We further take the x, y → ∞ limit. This maximizes the distance of the operators R1 and

R2 from R and gives a probability independent of the spacetime positions of the operators.
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For two giants combining into another giant we get

P (2 size N/2 S giants → 1 size N S giant) =
f[1N ]

∑

S g
(

[1N/2], [1N/2];S
)2

fS

< 1

P (2 size N/2 AdS giants → 1 size N AdS giant) =
f[N ]

∑

S g ([N/2], [N/2];S)2 fS

< 1 (6.2)

For the transition of Kaluza Klein gravitons to a giant we get

P (N size 1 KK gravitons → one size N S giant) ∼ 1

NN

P (N size 1 KK gravitons → one size N AdS giant) ∼
(

22N−1 1√
πN

)

1

NN
(6.3)

P (N/2 size 2 KK gravitons → one size N S giant) ∼
√

2

e

1

(eN)N/2

P (N/2 size 2 KK gravitons → one size N AdS giant) ∼
(

22N−1 1√
πN

)

√

2

e

1

(eN)N/2

(6.4)

We see that larger KK gravitons are more likely to evolve into a giant graviton than several

smaller ones. It would be interesting to give a proof that this trend continues to hold when

KK states of more general small angular momenta are considered. For the case of N/k

angular momenta equal to k, the obvious guess extrapolating the leading behavior of the

above results is N−N/k. The results of appendix A.6 will be useful for the case where only

angular momentum 1 and 2 are involved. More generally we will need to establish some

general properties of the relevant symmetric group quantities. The information theoretic

ideas on overlaps from [29] may be explored as a tool.

Strictly traces can only be interpreted as Kaluza-Klein states when the individual

traces involved are small as above. It is of interest, nevertheless, to compute probabilities

for extrapolated KK-states where large powers are involved. We find

P (1 size N KK graviton → one size N S giant) ∼
√

πN
1

22N

P (1 size N KK graviton → one size N AdS giant) ∼
(

22N−1 1√
πN

)√
πN

1

22N
=

1

2

(6.5)

For transitions to outgoing KK gravitons we must use the basis dual to the trace basis.

For the case of a single trace, and an initial giant, we find the same probability whether

we have a sphere giant or an AdS giant

P (one size N giant → one size N KK graviton) =
1

N
(6.6)

These transitions do not decay exponentially as N becomes large. Note also the asymmetry

between (6.6) and (6.5), which is another illustration of the probabilities on the choice of

measurement.
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6.2 G = 1 factorization

For the amplitude of 1 giant graviton into 2 smaller giants we must use genus-1 factorization.

We take two 4-spheres, one with coordinates (r,Ωi), the other with (s,Ω′
i), cut out two 4-

balls at radii 1 and eT from the origin in each, and glue the spheres together so that rs = 1

near the first gluing and rs = e2T near the second. Also introduce a primed coordinate r′

on the first sphere with rr′ = 1 and s′ on the second with ss′ = 1.

The probability is then given by

P
(

R(r = ex,Ωi) → R′
1(r

′ = 0)R2(r = 0)
)

= Z0e
−2T∆1

∣

∣

〈

R†(r = ex,Ωi)R
′
1(r

′ = 0)R2(r = 0)
〉∣

∣

2

〈

R†(s = ex,Ωi)R(r = ex,Ωi)
〉

G=1

〈

R†
1R1

〉〈

R†
2R2

〉
(6.7)

where x ∈ [0, T ] so that the operator is outside the cut-off area. We take the limit T → ∞,

where the factor Z0e
−2T∆1 goes to 1 (see discussion in section 5.6.1). In addition we fix

x = 1
2T so that the operators are far apart from each other, maximizing the distance of the

insertion of R from the two boundaries of the cut S4. This procedure will give a probability

independent of the spacetime dependencies of the operators, as discussed in section 5.7. In

this limit we find

P (R → R1, R2) =
1

2∆1+∆2

g(R1, R2;R)2fR

fR1fR2

(6.8)

For the transition of a giant into two smaller giants

P (1 size N S giant → two size N/2 S giants) ∼
√

πN

2

(

1

2

)2N

P (1 size N AdS giant → two size N/2 AdS giants) ∼ 3√
8

(

16

27

)N

(6.9)

These are well-normalized probabilities and demonstrate that (6.7) with a higher genus

correlator in the denominator gives the proper implementation of the multi-particle nor-

malization. In the old multi-particle normalization prescription, we got a divergent result

for this transition of AdS giants

∣

∣

∣

〈

χ[N ](Φ
†)χ[ N

2
](Φ)χ[ N

2
](Φ)

〉

∣

∣

∣

2

〈

χ[N ](Φ†)χ[N ](Φ)
〉〈

χ[ N
2

](Φ
†)χ[ N

2
](Φ)

〉〈

χ[ N
2

](Φ
†)χ[ N

2
](Φ)

〉 ∼ 3√
8

(

32

27

)N

(6.10)

The factor of 2−N from equation (6.8) provides the correction to (6.10) to give the correctly

normalized result (6.9).

We can also compute the transition of a giant to two Kaluza-Klein gravitons giving

P (1 size N S giant → two size N/2 KK gravitons) ∼
(

2

N

)2
√

πN

2

(

1

2

)2N

P (1 size N AdS giant → two size N/2 KK gravitons) ∼
(

2

N

)2 3√
8

(

16

27

)N

(6.11)
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These are well-normalized probabilities. In the old multi-particle normalization scheme,

we had a diverging result for this transition

∣

∣

∣

〈

χ[N ](Φ
†)tr (Φ

N
2 )tr (Φ

N
2 )

〉

∣

∣

∣

2

〈χ[N ](Φ†)χ[N ](Φ)〉
〈

tr (Φ†N
2 )tr (Φ

N
2 )

〉〈

tr (Φ†N
2 )tr (Φ

N
2 )

〉

∼ 1

6
√

2

(

32

27

)N

(6.12)

An interesting question is whether a Schur polynomial operator can only evolve into

other Schur polynomials. We might ask whether in the large T limit

∑

R1,R2

P (R → R1, R2) (6.13)

adds up to 1. We can calculate this sum when R is a sphere (or AdS) giant because, by

the Littlewood Richardson rules, it can only split into other sphere (or AdS) giants. We

find that this guess does not work

∑

k

P ([1N ] → [1k], [1N−k]) < 1 (6.14)

which means that the infinite sums over additional outgoing states do contribute a finite

amount.

6.3 Higher genus factorization

For higher genus G = n−1 factorization, a natural guess for the analogous equation to (6.8)

is

P (R → R1, R2, . . . , Rn) =
1

k∆1+∆2+···+∆n
n

g(R1, R2, . . . , Rn;R)2fR

fR1fR2 · · · fRn

(6.15)

where kn is a constant. We know k1 = 1 and k2 = 2. We assume that this equation holds in

a long-distance limit, when the operators are in a symmetric configuration far apart from

each other.

We can work out limits on kn by considering the transition of an AdS giant into n

smaller AdS giants

P ([N ] → n × [N/n]) =
1

kN
n

f[N ]

fn
[N/n]

∼ 1√
2

[

(n + 1)

n

]n
2

[

4nn+1

kn(n + 1)n+1

]N

(6.16)

in the large N limit. Given that 4nn+1(n + 1)−n−1 tends up to 4/e, kn > 4/e would

certainly ensure that the probability is not larger than 1, although this condition is clearly

too strong for n = 1. kn = n would satisfy this condition and works for n = 1, 2 but this

is no more than a guess.

For the transition of an AdS giant of R-charge ∆R to KK gravitons we find

P ([∆R] → tr (Φ∆1), . . . tr (Φ∆n)) =
1

k∆R
n

1

∆1 · · ·∆n

f[∆R]

f[∆1] · · · f[∆n]
(6.17)
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and for a sphere giant

P ([1∆R ] → tr (Φ∆1), . . . tr (Φ∆n)) =
1

k∆R
n

1

∆1 · · ·∆n

f[1∆R ]

f[1∆1 ] · · · f[1∆n ]

(6.18)

For genus G = 2 we have for the transition of an AdS giant into KK gravitons

P (1 size N AdS giant → three size N/3 KK gravitons) =

√

2

3

36

N3

(

81

64k3

)N

P (1 size N AdS giant → one size N − 2 and 2 size 1 KKs) =
(2N − 1)(2N − 2)

(N − 2)N2

1

kN
3

(6.19)

which makes it more likely for a giant to evolve into 3 medium-sized KK gravitons than

into one large one and two tiny ones.

7. Bulk interpretation of the gluing properties of correlators

The factorization properties of the CFT correlators allow the construction of correlators

on a 4-manifold of more complicated topology in terms of correlators on manifolds of

simpler topology. For example the theory on S3 × S1 can be reconstructed by starting

from correlators on S4. As we have emphasized above, these relations imply that to get

properly normalized probabilities from correlators on S4 (or the conformally equivalent R
4)

we need, in general, correlators on more complicated topologies.

In the CFT the correlators of local operators can be interpreted in terms of transi-

tion amplitudes between states. These states can be identified as wavefunctionals of the

fields on S3 boundaries of four dimensional balls, B4, cut out around the local operators.

Hence the amplitudes are given by path integrals with boundary conditions on the CFT

fields, specified at the S3 boundaries. Using this CFT interpretation of correlators as

transition amplitudes, and the bulk-boundary correspondence of AdS/CFT, it is natural

to interpret the correlators as gravitational transition amplitudes, obtained by Euclidean

bulk path integrals, subject to boundary conditions for bulk fields that are specified in

the neighborhood of the local operator insertions in the boundary CFT. This is indeed

compatible with perturbative computations [2, 3, 11, 12] for operators of small R-charge.

The work of LLM [10] relating local operators to bulk geometries suggests that we can in-

terpret correlators of operators with large R charge in terms of bulk transition amplitudes

between geometries (LLM-like in the case of half-BPS operator insertions) defined in the

neighborhood of the boundary insertions. Note that although the bulk path integral is over

Euclidean metrics, the asymptotic geometries are AdS-like, and so they admit a Lorentzian

continuation. For a recent discussion of Euclidean quantum gravity in an M-Theory context

see [49]. The above bulk spacetime picture of correlators implies, for example, that a three

point function of gauge theory operators can be viewed as a transition from a disjoint union

of LLM geometries to a single LLM geometry. This is a topology changing process. We

will note, in section 7.3, that this holographic setup for topology change implies constraints

on the interpolating topologies.
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In this section we will investigate some of the implications of this picture. Some of our

discussion will be in terms of the five-dimensional bulk, where the sphere part of AdS5×S5

is captured through dimensional reduction to gravitational fields on AdS5 and higher KK

modes coming from the five sphere.

One strength of the interpretation of correlators as transition amplitudes computed via

bulk Euclidean path integrals is immediately apparent. Since the factorization properties

of correlators on the CFT side follow from the path integral implementation of geometrical

gluing relations, it is reasonable to expect that a simple bulk-gravitational explanation of

these relations among correlators might follow from the postulate that the correlators can

also be interpreted as gravitational transition amplitudes defined in terms of path integrals

with asymptotic geometries (LLM-like geometries in the case of half-BPS operators of large

R charge). Gluing on the CFT side is then lifted to gluing on the gravity side. In CFT,

an important ingredient in relating path integral gluing to relations among correlators of

operators is the correspondence between operators and states, viewed as wavefunctionals.

Such a connection in gravity is not directly understood, but we will be lead to some

discussion of it based on AdS/CFT considerations in section 7.5.

In addition to SYM correlators on S4 we will be interested in correlators on manifolds

which can be obtained by simple cutting and pasting procedures of copies of S4. We can cut

out the open four-ball neighborhoods B4
◦ of n points of S4 and to get a manifold denoted

by S4 \ tn
α=1(B

4
◦)α. This can also be written as S4 \ tn

α=1(B
4)α, indicating that we can

remove closed balls, and then take the closure.9 Take two copies of S4 \ tn
α=1(B

4
◦)α and

glue along the S3 boundaries. The analogous construction in two dimensions gives the

genus n − 1 surface. We will denote the corresponding manifold in 4D as Σ4(n − 1) and

refer to it as having genus n − 1 by analogy to the 2D case. The subscript denotes the

dimension, and the argument denotes the genus. These manifolds can also be obtained

as the boundary in R
5 of the neighborhood of a graph with n − 1 loops. In the following

we will also find it useful to consider neighborhoods of graphs in B5, with endpoints of

the graph lying on the S4 boundary of the B5. These graphs, denoted as Witten graphs,

appear in the perturbative computation of correlators in AdS. They will play a role in

understanding how to lift gluings of S4 \ tn
α=1(B

4
◦)α to the bulk.

7.1 Bulk geometries for S3 × S1 boundary from Witten graphs

Consider the case of S3 × S1. Start from 2-point functions on S4. Cut out two disjoint

copies of B4
◦ around the insertion points, obtaining a manifold with topology S3× I. Using

the scaling symmetry on S4, we can obtain states at the boundaries of S3 × I. Two copies

of S3×I can be glued to get S3×S1. The S4 is the boundary of Euclidean AdS5, which has

topology B5. We would like to understand how the gluing lifts to the bulk. It is well known

that the supergravity partition function for the S3×S1 manifold receives contributions from

two different bulk topologies, namely B4 × S1 and S3 × B2 [3, 50]. Hence the procedure

for lifting the gluings from boundary to bulk should account for both these possibilities.

We will demonstrate that this is accomplished simply by using Witten graphs.

9Bk will denote closed balls and Bk
◦ open ones.
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Figure 9: Disconnected graph G1 in B5 associated with two insertions on the boundary S4

Figure 10: Neighborhood of the graph G2

Given two points on S4 bounding a B5, a very simple graph to consider is the discon-

nected one consisting of two lines, joining points in the bulk to the points on the boundary

(see figure 9). We will denote this disconnected graph G1. The neighborhood of each line is

a B4 fibered over an interval and collapsing to zero size at one end. This is homeomorphic

to B5. Hence the neighborhood of the graph is a disjoint union of two small B5’s. Now

consider the original B5 with this neighborhood removed, i.e the complement in B5 of

the neighborhood of the graph. Take the closure. Let us call this B5 \ N(G1, B5) where

N(G1, B
5) indicates a neighborhood10 in the B5 of the graph fixed by a small number

ε. The original S4 boundary now has two B4
◦ removed. It has two S3 boundaries (see

figure 10), exactly the geometry we would consider purely from the point of view of CFT

on S4. After excising these graph neighborhoods from B5 ( and taking the closure ), the

original S4 boundary has become S3 × I. The remaining 5D manifold still has topology

B5, and its S4 boundary can be described as

B4 ∪ (S3 × I) ∪ B4

10More exactly we write N(G, B5) = {x ∈ B5 : ||G − x|| ≤ ε} where we are using the metric inherited

from the trivial embedding of B5 in R
5. We do not use the metric of Euclidean AdS in this definition.
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Figure 11: Gluing two copies of the B5 with graph neighborhood removed

Figure 12: Connected graph G2 in B5 associated with two insertions on S4

The two B4’s are joined to S3 × I at the two ends of I on S3’s.

Take two copies of this B5 \ N(G1, B5) which is topologically the same as B4 × B1 ∼=
B5, and do two gluings (see figure 11). The outcome is B4 × S1 with boundary S3 × S1.

Thus we have obtained one of the bulk geometries holographically dual to S3×S1 by lifting

to the bulk the CFT gluing of two copies of S3 × I.

Now we want to understand, through the bulk lifting of boundary gluings, the bulk

geometry S3 × B2 which also has boundary S3 × S1. Again we start with two points in

the S4 boundary of B5. Now draw the graph which joins the two points and extends

through the bulk (see figure 12). We will call this graph G2. The neighborhood of the

graph is B4 × I. Excise this neighborhood from the B5. The manifold B5 \ N(G2, B5)

(see figure 13), has topology S3 ×B2, which has boundary S3 ×S1. The S1 consists of the

interval I which bounds the excised region, joined to a semicircular interval on the original

S4 boundary. Now take two of these B5 \ N(G2, B5). Glue along the interior S3 × I as

indicated in figure 14. Since B2 joined to another B2 along an interval is B2, the outcome

of this gluing of S3 × B2 to S3 × B2 along S3 × I is S3 × B2. This is the second topology

with boundary S3 × S1 which appears in [3].
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Figure 13: Neighborhood of the connected graph G2 of topology B4 × I

Figure 14: Gluing two copies of the B5 with graph neighborhood removed

7.1.1 Further topologies with S3 × S1 boundary

If we use more complicated Witten graphs, with loops inside the bulk B5, we get more

complicated bulk manifolds with boundary topology S3 × S1. We do not know if they

support metrics which are extrema of the supergravity action. But they will certainly

contribute in the bulk path integral corresponding to the partition function on S3 ×S1. A

natural question is whether, using the most general Witten graphs and the most general

gluing maps, we can produce the most general bulk topology with the specified boundary

topology.

7.2 Gluing to higher genus 4-manifolds and corresponding bulk topologies

In this section we will show how to build bulk topologies corresponding to the higher

genus four-manifolds Σ4(n− 1). As mentioned earlier we can obtain Σ4(n− 1) by starting

with two copies of S4 with n punctures, excising n copies of B4
◦ around the punctures

and gluing along the S3 boundaries. Following the lead from the discussion of Σ4(1),

we will consider tree-level Witten graphs with n boundary points. For our topological

considerations, graphs related by merging two internal vertices by shrinking a connecting
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Figure 15: The different handles in 3 dimensions

edge will be equivalent. Distinct graphs will correspond to different ways of separating

the n points into subsets. This is the same as the number of ways of partitioning n,

usually denoted by p(n). All the points in one subset will be joined up by one vertex

in the bulk. When all the n points are connected by one vertex, we have a connected

graph Vn. When they are separated into different subsets, we have disconnected graphs.

In the description of the bulk topologies corresponding to disconnected graphs, it will be

useful to use the concept of handle attachment, which appears in the theory of handlebody

decompositions [51]. We will start with a brief review of handlebody decompositions. For

a physics discussion of these see [52, 53].

7.2.1 Handlebody decompositions

To give a handlebody decomposition of a manifold M , we start with a d-dimensional ball

Bd (a 0-handle) and then add handles to it until we obtain a manifold homeomorphic

to M . A k-handle is a manifold Bk × Bd−k which we glue onto M along the boundary

∂Bk × Bd−k = Sk−1 × Bd−k.

For the different handles in three dimensions, d = 3, see figure 15. A 0-handle B3 is

a filled ball. A 1-handle B1 × B2 is a filled cylinder which we can bend to attach it to

the manifold at the two ends of the cylinder (S0 × B2, two disconnected filled circles). A

2-handle B2×B1 can be thought of as a thickened hemisphere (like a squash ball cut down

the middle) which we glue along the base S1×B1. The B1 interval provides the thickening.

A 3-handle B3 is a filled ball which we glue along its surface S2. In general handlebody

decompositions are not unique.

7.2.2 Gluing for the complements of connected Witten graphs

Now we want to understand how to glue the five-manifolds related to connected Witten

graphs. We have two copies of B5 \ N(Vn, B5). Each is obtained by removing from B5 the

neighborhood N(Vn, B5) of the Witten graph Vn, and taking the closure of the resulting

manifold. This procedure restricts, on the boundary of the B5, to the excision of n copies of

B4
◦ around n points on the S4. It thus provides a bulk lifting of the usual CFT construction

of removing open neighborhoods of operator insertions. The neighborhood N(Vn, B5)

has topology B5 and boundary S4. The interior boundary of this neighborhood will be
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Figure 16: B3 is homeomorphic to N(V3, B
3)

Figure 17: B3 \ N(V3, B3) is homeomorphic to ∂(i)N(V3, B
3) × B1: thickened pants

defined as the intersection of the boundary of N(Vn, B5) with B5 \ N(Vn, B5). This interior

boundary11 will be denoted by ∂(i)N(Vn, B5). For concreteness see the left picture in

figure 17 for B3 \ N(V3, B3). It is clear that ∂(i)N(V3, B
3) is the usual two dimensional

pants diagram. We will be gluing two copies of B5 \ N(B5, Vn) along ∂(i)N(Vn, B5).

The crucial observation is that B5 \ N(Vn, B5) is homeomorphic to the thickening,

∂(i)N(Vn, B5)×B1, of the internal surface ∂(i)N(Vn, B5). We see this by first noting that B5

is homeomorphic to N(Vn, B5) (see figure 16 for the case d = 3, n = 3). Then if we remove

N(Vn, B5) from the B5, and take the closure, we just get a thickening ∂(i)N(Vn, B5) ×B1

of the internal surface (see figure 17 for the case of d = 3, n = 3). Since B5 \ N(Vn, B5)

is homeomorphic to ∂(i)N(Vn, B5)×B1, B5 \ N(Vn, B5) is homotopic to ∂(i)N(Vn, B5) by

the trivial homotopy retract that shrinks the B1 to a point.

This means that we can ‘invert’ the second copy of B5 \ N(Vn, B5) and glue it inside

the internal surface ∂(i)N(Vn, B5) of the first copy of B5 \ N(Vn, B5) (see figure 18 for

d = 3, n = 3). To invert the second copy we take the manifold ∂(i)N(Vn, B5) × B1 and

invert the direction of the B1 coordinate.

The resulting manifold is the same as ∂(i)N(Vn, B5)×B1, but now double the thickness.

Thus it has the same topology as the original manifold B5 \ N(Vn, B5). It is interesting

to note that ∂B5 \ N(Vn, B5) is made of two copies of S4 \ tn
α=1B

4
◦ joined at the S3’s,

11More formally ∂(i)N(G, B5) = {x ∈ B5 : ||G − x|| = ε}. ∂(i)N(G, B5) differs from ∂N(G, B5) because

∂N(G, B5) includes the four-balls around the insertion points of the Witten graphs.
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Figure 18: ∂(i)N(V3, B
3) × B1 glued to ∂(i)N(V3, B

3) × B1 along the internal surface

Figure 19: B3 \ N(V3 t V2, B3); a 1-handle links the connected parts

hence it is Σ4(n − 1). This is consistent with the result that the gluing has not changed

the topology of the bulk manifold or its boundary.

7.2.3 Gluing for the complements of disconnected graphs

Suppose a Witten graph G is composed of m disconnected components G = Vn1 t Vn2 t
· · · t Vnm where t means disjoint union.

If we now glue B5 \ N(G,B5) to a copy of itself along the internal surface ∂(i)N(G,B5)

the resulting manifold is the same one B5 \ N(G,B5) with (m − 1) 1-handles attached.

We can see this if we deform B5 \ N(G,B5) into B5 \ N(Vn1 , B
5), B5 \ N(Vn2 , B

5),

. . . and B5 \ N(Vnm , B5) linked in a line by 1-handles (see figure 19). Locally each

B5 \ N(Vni , B
5) glues to its copy as above for the connected Witten graphs. Now there

are two 1-handles in each link between the connected parts, generating (m− 1) non-trivial

1-cycles. We can also obtain this manifold by starting with B5 \ N(G,B5) and attaching

(m − 1) 1-handle loops.

The figure also makes it clear that the boundary of B5 \ N(G,B5) is a connected sum

of Σ(n1 − 1),Σ(n2 − 1) · · ·Σ(nm − 1). This boundary is topologically Σ(n − m) where

n =
∑m

i=1 ni. After the gluing we have B5 \ N(G,B5) with (m − 1) 1-handles attached.

Each 1-handle increases the genus by one, so the glued manifold has boundary Σ(n − 1),

as expected.

7.2.4 Homology groups

For the complement of the connected Witten graph, B5 \ N(Vn, B5), the homology groups,
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derived in appendix section H.3, are

• H0(B5 \ N(Vn, B5)) = Z

• H1(B5 \ N(Vn, B5)) = {0}

• H2(B5 \ N(Vn, B5)) = {0}

• H3(B5 \ N(Vn, B5)) = Z
n−1

• H4(B5 \ N(Vn, B5)) = {0}

• H5(B5 \ N(Vn, B5)) = {0}

The Euler character follows

χ(B5 \ N(Vn, B5)) =
∑

j

(−1)jbj = 1 + (−1)3(n − 1) = 2 − n (7.1)

For the homology of B5 \ N(Vn1 t Vn2 t · · · t Vnm, B5), the complement of a discon-

nected Witten graph, see appendix section H.4.

For the genus n − 1 4-manifold Σ4(n − 1) the homology groups, derived in appendix

section H.5, are

• H0(Σ4(n − 1)) = Z

• H1(Σ4(n − 1)) = Z
n−1

• H2(Σ4(n − 1)) = {0}

• H3(Σ4(n − 1)) = Z
n−1

• H4(Σ4(n − 1)) = Z

For the case of a 2-dimensional boundary the same methods give the standard homology

of a Riemann surface with genus g = n − 1

• H0(Σ2(n − 1)) = Z

• H1(Σ2(n − 1)) = Z
2(n−1)

• H2(Σ2(n − 1)) = Z

A simple check on these results is provided by the Mayer-Vietoris sequence, which

relates homology groups associated with X ∪ Y , X × Y and X ∩ Y . In our case X =

B5 \ N(Vn, B5). Y is N(Vn, B5), the closed neighborhood of the graph, which has the

topology of a ball. X ∪ Y is B5. X ∩ Y is the interior part of the boundary of N(Vn, B5),

called ∂(i)N(Vn, B5). The Mayer-Vietoris sequence implies that

χ(X) + χ(Y ) = χ(X ∩ Y ) + χ(X ∪ Y ) (7.2)
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In this case

χ(Y ) = χ(B5) = 1

χ(X ∩ Y ) = 2 − n

χ(X ∪ Y ) = χ(B5) = 1 (7.3)

Hence we deduce χ(X) = 2 − n. In the above we have used the fact that the Euler

character of X ∩Y = ∂(i)N(Vn, B5) is 2−n. In the case of 3D bulk and 2D boundary this

is the familiar Euler character of S2 with n disks removed. In the case of 5D bulk and 3D

boundary this is derived in the appendices. One way is to use an explicit cell decomposition

(see appendix section H.3). The other way is to use the fact that S4 \tα(B4
◦)α is a quotient

of B4 \ tα(B4
◦)α, which retracts to an n-wedge of spheres (see appendix section H.1).

Note that we expected χ(B5 \ N(Vn, B5)) = χ(∂(i)N(Vn, B5)) since B5 \ N(Vn, B5) is

homotopic to ∂(i)N(Vn, B5) and the Euler characteristic is homotopy invariant.

Now we take the gluing of X with another copy of X along ∂(i)N(Vn, B5). Let us call

the resulting space Z. Then

X ∪ X = Z

X ∩ X = ∂(i)N(Vn, B5) (7.4)

Use 7.2 again to find

χ(X) + χ(X) = χ(Z) + (2 − n) (7.5)

which gives χ(Z) = 2 − n. We have explained that X ∼= Z so we have here checked that

χ(Z) = χ(X), i.e. the Euler characters before and after gluing are the same.

7.3 Holographic topology change

A clear prescription for the computation of correlators in Euclidean AdS space is given

in [3, 2] in the context of perturbation theory, using the correspondence between single trace

CFT operators and Kaluza-Klein states in the bulk. As emphasized in [7] the perturbative

set-up does not work for operators of large R charge. A clear extension of the perturbative

prescription for the computation of Euclidean correlators is not available. The work of

LLM suggests that for the Schur polynomial operators, in the regime of sufficiently large

R charge, the right way to find the bulk computation of the correlators is to use the LLM

geometries. For a Euclidean setting it is natural to do a Wick rotation of the LLM geometry

and cutoff the region where the S3 of AdS is larger than a fixed size.

For concreteness consider a three-point function. For each operator insertion we have

a cut-off LLM-like geometry, which determines boundary conditions for the bulk path

integral over metrics ( and other fields ). The three-point correlator can be viewed as a

transition amplitude between a disconnected pair of LLM-like geometries and a single LLM-

like geometry. This is reminiscent of cobordisms, where a manifold interpolates between

several disconnected boundary components. These appear in formal discussions of 2D CFT

and topological field theory [44]. In low dimensional Matrix models, this is discussed as

macroscopic loop amplitudes [42]. A 2-dimensional example is the pants diagram which

describes a transition from a disjoint union of two circles to a single circle (see figure 20).
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Figure 20: On the left is a cobordism between two S1’s (or S3’s) and one S1 (or S3); on the right

is the analogous interpolation for the bulk

In the CFT we can think of our transition amplitudes in terms of cobordisms. For

a three-point function for example, we take S4 and cut out 3 balls around the operator

insertions. We then map our operators to states in Hilbert spaces associated to the three

S3 boundaries. The S4 with three balls removed is an interpolation ( cobordism ) between

the disjoint union of two S3’s and a single S3. The correlator is computed as a CFT path

integral on this cobordism. To lift this picture to the bulk let us assume for simplicity

that we can discuss this in the purely five dimensional perspective. We take our Euclidean

AdS, which we think of as a 5-dimensional ball, and remove B5’s at the boundary around

the operator insertions (see figure 20). We can then insert cut-off LLM-like geometries

associated with the operators in the balls. We integrate over all metrics ( and other fields )

in the remaining bulk. At the interface of the bulk with the LLM geometries (shaded gray

in figure 20) the boundary conditions are specified by the cut-off LLM. The bulk must also

be asymptotically Euclidean AdS in the remaining boundary regions. We have a transition

from a pair of disjoint geometries to a single one. This is not a cobordism because the

initial and final conditions do not correspond to distinct boundaries of the bulk, but rather

to different marked regions of the single boundary, with boundary conditions determined

by LLM geometries.

It is worth emphasizing an important difference between this picture of topology change

with the one natural from a traditional gravitational path integral perspective, which uses

cobordisms and does not implement holography. From the traditional perspective, a five

dimensional gravity theory would sum over all possible topologies consistent with the initial

and final topologies living at 4D boundaries, using some appropriate weights [54, 52]. But

from the holographic picture, we have 5D geometries which provide 4D boundary conditions

on separate regions of the 4D boundary. The topology of the complete 4D boundary is

fixed, since this is where the dual non-gravitational field theory lives. Fixing the boundary

topology constrains the bulk topology. This is easiest to see in the even simpler case

of 2D boundary theory and 3D bulk. There are many ways to interpolate between two

copies of B2 × I and a single copy, involving boundary topology of arbitrary genus (with
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Figure 21: Two different interpolating bulk geometries

three boundary circles). Figure 21 gives the genus zero and genus one cases. But the

boundary CFT gives a well-defined amplitude for each fixed genus. The CFT does not

give a prescription for summing over these different topologies. The story is the same in

the case of 4D CFT/5D bulk. We are given, from super-Yang Mills theory, a three point

function for a fixed boundary topology. We can construct bulk topologies interpolating

between two balls B4 × I and a single one by using neighborhoods of graphs with three

vertices, with any number of loops (note that in previous discussions we considered graphs

with no loops). SYM does not give a way of summing over these different 4D topologies.

Hence holography acts as a constraint on interpolating topologies.

Given that the bulk-boundary correspondence in ADS/CFT [55] can be interpreted in

terms of a Hartle-Hawking wavefunction [56], it is interesting to note that we here have

a situation where different regions of the Hartle-Hawking boundary are associated with

different geometries ( LLM-like for the case of half-BPS operators ). The search for a

framework that can handle probabilities for multiple geometries ( universes ) appearing

in a multiverse in the context of eternal inflation scenarios has been an active topic of

discussion [57 – 60]. It will be interesting to apply the lessons on the correct normalization

of probabilities in quantum gravity, given by AdS/CFT, to the spacetimes of interest in

eternal inflation. One qualitative lesson we may extract from sections 3-6 in this paper, is

that properly normalized answers to questions regarding physics on one spacetime, require

knowledge of correlators on more complicated topologies. A systematic framework for

exploring the relevance of these ideas to eternal inflation could perhaps be found along the

lines [61].

Finally we note that a different perspective on topology change in the context of

LLM has been discussed in [62]. In the latter discussion, the topology changing process is

described entirely in terms of the Fermi sea. In the present picture the fermions are only

relevant as a description of the half BPS states in the asymptotic regions, while the bulk

involves fluctuating geometries and in general goes beyond the half BPS sector.
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7.4 Towards holographic topological gravity theory

The observations in this section can be viewed as hints towards the definition of axioms

for a holographic topological gravity theory. Such a theory in D dimensions is related to

a conformal or topological field theory in D − 1 dimensions. The partition function of the

holographic topological theory, obtained by a sum over topologies with fixed boundary, is

equal to that of the boundary field theory. Operator insertions at a point in the (D −
1) dimensional theory are associated to states in a Hilbert space, living on the D − 2

dimensional boundary of a neighborhood of the point. The usual gluing relations of the

boundary theory are lifted to the bulk via the Witten graph construction we have described.

The above remarks on holographic topology change should also have a natural role in an

axiomatic holographic topological gravity theory.

7.5 Operator-Wavefunctional correspondence in quantum gravity

In section 7.1 we posed a geometrical question on how to lift boundary gluings, associated to

a choice of punctures for insertions of local CFT operators, to bulk gluings. The solution we

described made use of Witten graphs which have the punctures as end-points and join them

up through vertices in the bulk. The same gluing on the base space of the CFT was lifted to

different gluings of the bulk manifolds, along the interior boundary of the neighborhoods of

the Witten graphs. From the CFT perspective, geometrical gluing relations translate into

relations between amplitudes, after we use the correspondence between local operators and

wavefunctionals of fields on a sphere surrounding the local operator. Interpreting the bulk

gluings in an analogous manner in terms of wavefunctionals of gravity ( and other fields ) in

AdS , we are lead to conclude that the insertion of a physical observable ( corresponding to a

CFT operator ) on the boundary of AdS leads to wavefunctionals on the interior boundaries

of the neighborhoods of all the possible Witten graphs. This is to be contrasted with the

much simpler operator-wavefunctional correspondence in CFT. Admittedly we have only

given indirect evidence for this more complicated operator-wavefunctional correspondence

in gravity, and it would be interesting to derive it more directly. It appears superficially to

be a consequence of the greater non-locality we expect in a quantum theory of gravity [63,

64]. A more direct derivation of this multiplicity of wavefunctionals related to a set of

operator insertions on the boundary should also clarify the relation between the topological

use of Witten graphs here and their perturbative use. The work of [65] has some of the

elements needed to make this connection. In that work, Feynman integrals IΓ are related

to expectation values of observables ( in a spin foam model ), i.e IΓ = 〈0|O|0〉. Since our

gluing story suggests the consideration of wavefunctionals associated to Feynman graphs, it

is natural to explore if they are related to states O|0〉 appearing in [65]. It is an interesting

future direction to explore the extension of this kind of connection between observables

and wavefunctionals in quantum gravity to more general spacetimes.

8. Summary and outlook

We started with a puzzle regarding the unexpected growth of normalized correlators of

gauge theory operators on S4 ( or R
4 ) corresponding to AdS giants. We have found
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a resolution of the paradox by observing that the proper normalization which leads to

a probabilistic interpretation involves the division by correlators on 4-manifolds of more

complicated topology, which we called higher genus manifolds by analogy to the two di-

mensional case. The appropriate behavior of the probabilities, that they are less than one

and add up to one when all outcomes are taken into account, follows from factorization

equations of 4D CFT which relate correlators on higher genus to those on lower genus.

These points were illustrated in two dimensions before moving on to the 4D case.

These factorization properties follow by implementing geometrical gluing relations at

the level of the path integral of the CFT. In AdS/CFT the CFT can be viewed as living on

a 4D boundary of a 5D bulk, where the extra five dimensions are reduced away à la Kaluza

Klein. As a first step towards a bulk understanding of these properties, we considered how

to lift the gluings of the 4D boundaries to the 5D bulk. Witten graphs played a central

role in this story.

There are several avenues for future research suggested by this work.

• We have observed a trend that products of traces are more likely to overlap with

Schur operators χR(Φ), if they involve traces of higher powers. It will be instructive

to see how general this is. If these results are extended to the case of decay of brane-

antibrane systems in AdS, they could be related to the fact that brane decay is more

likely to produce longer strings.

• We have explored the idea that LLM geometries determine boundary conditions for

the bulk path integrals. The results of section 7 can be viewed as indirect supporting

evidence for such a point of view. A more direct approach is desirable. A satis-

factory formulation should allow an extension of the Euclidean gravitational path

integral prescription for computation of perturbative correlators of single trace oper-

ators to the case of operators of very large charge corresponding to Young diagrams

(or fermion excitations).

• We have outlined some aspects of a holographic topological gravity theory in section 7.

It is an open problem to give complete definitions and exhibit non-trivial examples.

• While our discussion has focused on local operators, there is also a substantial liter-

ature on Wilson loops in N = 4 SYM, including connections to free fermions, see for

example [66 – 68]. We may expect that while summing over local operators leads to

gluing along S3, summing over Wilson loops will be related to gluing along S1 × S2.

One does have to deal with the additional subtlety that, in the case of a general

Wilson loop, conformal transformations ( which were used in the operator-state map

) will also transform the loop itself. We expect that many aspects of our discussion

of the lifts from boundary gluings to bulk gluings will carry over. The topological

role of neighborhoods of Witten graphs would now be extended to neighborhoods of

worldsheets of strings, bounded by the Wilson loops, and extending into the bulk. It

will be interesting to calculate normalized probabilities in the larger context involving

both Wilson loops and local operators.
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• The lessons we have learned on the correct normalization of probabilities should be

applied more generally in quantum gravity, in particular to the problem of probabil-

ities in the multiverse. We have made some preliminary remarks in this direction in

section 7.3.
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A. Appendix

A.1 Multiparticle-normalized transitions of S and AdS-giants

We want to work out the normalized correlators for transitions from AdS and S giant

graviton states into multiple KK gravitons. We will use two normalizations: the multi-

particle normalization and the overlap-of-states normalization.

For example the multi-particle-normalized S transition amplitude is given by

〈χ[1L](Φ
†)(tr (ΦJ))L/J 〉

||χ[1L](Φ)|| ||tr (ΦJ)||L/J
(A.1)

and the overlap-of-states-normalized AdS transition is given by

〈χ[L](Φ
†)(tr (ΦJ))L/J 〉

||χ[L](Φ)|| ||(tr (ΦJ))L/J || (A.2)

where we do not insist that L ∼ N so that we can be as general as possible.

The norms of the the S and AdS giants are given respectively by

||χ[1L](Φ)||2 = f[1L] =
N !

(N − L)!
(A.3)

||χ[L](Φ)||2 = f[L] =
(N + L − 1)!

(N − 1)!
(A.4)

We can compute the norms involving traces in certain limits. These tractable cases are:

• L ¿ N and any J ≤ L for the overlap normalization;

• J ¿ N and any L for the multi-particle normalization;

• J = 1, 2 and any L for the overlap normalization (see sections A.3 and A.4);

• J = L,L/2 for both normalizations (see section A.5).
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For L ¿ N for the overlap-of-states normalization and J ¿ N for the multi-particle

normalization, we can use the result proved below that for large N and JM ¿ N

||(tr (ΦJ))M ||2 = 〈(tr (ΦJ))M (tr (Φ†J))M 〉 ∼ M !JMNJM (A.5)

from which we see that the multi-particle normalization factor for J ¿ N is

||(tr (ΦJ))||L/J ∼ JL/2JNL/2 (A.6)

If we fix L and vary J , then we find that JL/2JNL/2 increases to a peak of eL/2eNL/2 at

J = e and then decreases sharply approaching zero. The overlap-of-states normalization

factor for L ¿ N is given by

||(tr (ΦJ))L/J || ∼
√

(L/J)!JL/2JNL/2 (A.7)

which decreases even faster as a function of J . It still peaks around J = 1, 2. The fact

that both of these normalizations are decreasing functions of J in these bounds means that

giant gravitons are always more likely to undergo transitions into larger KK modes than

smaller ones.

Now we can proceed

〈χ[1L](Φ
†)(tr (ΦJ))L/J 〉 =

∑

R1···RL/J

g(R1, . . . , RL/J ; [1L])χR1 (J) · · ·χRL/J
(J) f[1L]

=
(

χ[1J ] (J)
)L/J

f[1L]

= (−1)(J−1)L/J ||χ[1L](Φ)||2 (A.8)

We obtain the first line by writing each trace tr (ΦJ) as a sum of Schur polynomials12 over

representations of the symmetric group SJ . Each trace sum includes representations Ri

corresponding to Young diagrams with J boxes only. χRi(J) is the character of a cycle of

length J , e.g. (12 . . . J). In the second line we have noted that we can only build [1L] in

tensor products of representations which are also single columns. Thus the LR coefficient

g(R1, . . . , RL/J ; [1L]) is non-zero only when each Ri = [1J ].

Similarly

〈χ[L](Φ
†)(tr (ΦJ))L/J 〉 =

∑

R1···RL/J

g(R1, . . . , RL/J ; [L])χR1 (J) · · ·χRL/J
(J) f[1L]

=
(

χ[J ] (J)
)L/J

f[1L]

= ||χ[L](Φ)||2 (A.9)

The multi-particle-normalized S transition for J ¿ N is given by

〈χ[1L](Φ
†)(tr (ΦJ))L/J 〉

||χ[1L](Φ)|| ||tr (ΦJ)||L/J
=

(−1)(J−1)L/J ||χ[1L](Φ)||
||tr (ΦJ)||L/J

∼ (−1)(J−1)L/JJ−L/2JN−L/2

√

N !

(N − L)!
(A.10)

12For details for this and other similar identities see appendix J.
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and to get the overlap-normalized version for L ¿ N just divide by
√

(L/J)!.

For L = N and J ¿ N we get for the multi-particle normalization

〈χ[1N ](Φ
†)(tr (ΦJ))N/J 〉

||χ[1N ](Φ)|| ||tr (ΦJ)||N/J
∼ (−1)(J−1)N/JJ−N/2JN−N/2NN/2e−N/2(2πN)

1
4

= (−1)(J−1)N/J (2π)
1
4 e−N/2+ 1

4
log(N)−(N/2J) log(J) (A.11)

which is exponentially decreasing for all J .

The multi-particle-normalized AdS transition for J ¿ N is given by

〈χ[L](Φ
†)(tr (ΦJ))L/J 〉

||χ[L](Φ)|| ||tr (ΦJ)||L/J
=

||χ[L](Φ)||
||tr (ΦJ)||L/J

∼ J−L/2JN−L/2

√

(N + L − 1)!

(N − 1)!
(A.12)

and to get the overlap-normalized version for L ¿ N just divide by
√

(L/J)!.

For L = N and J ¿ N we get for the multi-particle normalization

〈χ[N ](Φ
†)(tr (ΦJ))N/J 〉

||χ[N ](Φ)|| ||tr (ΦJ)||N/J
∼ J−N/2JN−N/22NNN/2e−N/22

1
4

= 2−
1
4 e−N/2+N log(2)−(N/2J) log(J) (A.13)

The factor on the N in the exponential is −1/2 + log(2) − (1/2J) log(J), which is positive

for all J . Thus this exponentially increases for all J . This shows that the multi-particle

normalization does not give well-defined probabilities.

A.2 Overlap normalizations: general formulas

Consider the correlator

〈 (tr ΦJ)M (tr Φ†J)M 〉 (A.14)

which appears in overlap normalizations. By using the diagrammatic method of [17] we

can get

〈 (tr ΦJ)M (tr Φ†J)M 〉 = JMM !
∑

σ2∈[JM ]

NC(σ1σ2) (A.15)

where σ1 is a fixed permutation in the symmetric group conjugacy class [JM ] ⊂ SJM ,

characterized by M cycles of length J , and σ2 runs over all the elements in this conjugacy

class. C(σ1σ2) is the number of cycles in the permutation σ1σ2. By converting to the Schur

basis, we can also get the equivalent form

〈tr (ΦJ)M tr (Φ†J)M 〉 =
∑

R

χR (σ1)χR (σ1) fR (A.16)

where σ1 is again a fixed permutation in the conjugacy class [JM ].
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Getting explicit formulas for the sum in (A.15) requires additional work. For large N

and JM ¿ N the leading terms will be

〈(tr ΦJ)M (tr Φ†J)M 〉 = JMM !
(

NJM + O(NJM−2)
)

(A.17)

The first term comes from (A.15) when σ1σ2 = 1JM . There is no NJM−1 term because

that would require σ1σ2 ∈ [1JM−22], a permutation with odd sign. This is impossible

because σ1σ2 must have even sign since σ1 and σ2 are in the same conjugacy class. This

is an important fact because if we now raise (A.17) to a multiple of N , as we do for

the multi-particle normalization, we see that we only need the first term for the large N

approximation.

For J = 1, 2 we can work out more explicit formulas for the sum in (A.15) (see

sections A.3 and A.4); also any J for M = 1 (see section A.5).

A.3 Overlap normalization for (tr Φ)M

We know that

〈 (tr Φ)M (tr Φ†)M 〉 = M !NM (A.18)

For M = N we find

〈 (tr Φ)N (tr Φ†)N 〉 ∼ N2Ne−N
√

2πN (A.19)

which will make both the S and the AdS correlator very small indeed.

For the transition from L KK modes, of angular momentum 1 each, to an S-giant, we

get

〈χ[1L](Φ)(tr Φ†)L〉
||(tr Φ)L|| ||χ1L(Φ)|| =

√

1

NL

N !

L!(N − L)!
(A.20)

For L = N

〈χ[1N ](Φ
†)(tr Φ)N 〉

||χ[1N ](Φ)|| ||(tr Φ)N || =
||χ[1N ](Φ)||
||(tr Φ)N ||

=

√

N !

N !NN

=N−N/2 (A.21)

For the transition from L KK modes of angular momentum 1 each to an AdS-giant,

we get

〈χ[L](Φ)(tr Φ†)L〉
||(tr Φ)L|| ||χ[L](Φ)|| =

√

(N + L − 1)!

(N − 1)!L!NL
(A.22)

When L = N

〈χ[N ](Φ
†)(tr Φ)N 〉

||χ[N ](Φ)|| ||(tr Φ)N || =
||χ[N ](Φ)||
||(tr Φ)N ||

=

√

N(2N)!

2NN !

1

N !NN

∼2N−1/2(πN)−1/4N−N/2 (A.23)

which are both very small.
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A.4 Overlap normalization for (tr (Φ2))M

We can show (see below) that

〈 (tr Φ2)M (tr Φ†2)M 〉 =22MM !λ(λ + 1)(λ + 2) · · · (λ + M − 1)

=22MM !
(λ + M − 1)!

(λ − 1)!
(A.24)

where λ = N2/2. For M = N/2 we find that

〈 (tr Φ2)N/2(tr Φ†2)N/2〉 ∼2N (N/2)!
(N2/2 + N/2)!

(N2/2)!

∼2N
√

πNe−N (N/2)N/2(N2/2 + N/2)N
2/2+N/2(N2/2)−N2/2

=2N
√

πNe−N (N/2)N/2(N2/2)N/2(1 + 1/N)N
2/2+N/2

=2N
√

eπNe−N/2(N/2)N/2(N2/2)N/2

=
√

eπNe−N/2N3N/2 (A.25)

where we have used (1 + 1/N)N ∼ e and (1 + 1/N)N
2 ∼ eN .

For the transition from N KK modes, with angular momentum 2 each, to an S-giant,

we get

〈χ[1N ](Φ
†)(tr Φ2)N/2〉

||χ[1N ](Φ)|| ||(tr Φ2)N/2|| ∼ (2/e)1/4N−N/4e−N/4 (A.26)

For the transition to the AdS giant we get

〈χ[N ](Φ
†)(tr Φ2)N/2〉

||χ[N ](Φ)|| ||(tr Φ2)N/2|| ∼ 2N−1/4(eπ)−1/4N−N/4−1/4e−N/4 (A.27)

which are both very small, but larger than the J = 1 results.

A.4.1 Overlap normalization for (tr Φ2)M from Casimir diagrammatics

There is a nice formula, which can be derived using a diagrammatic method for the class-

algebra of symmetric groups.

The coefficient of N2K is obtained by summing over all possible ways of writing K =
∑

i=1 ki where k1, k2, k3 . . . are non-negative integers which also obey
∑

i iki = M

〈(tr Φ2)M (tr (Φ†)2)M 〉
=

∑

K

M !2N2K
∑

{ki}

∏

i

Fi

(A.28)

The Fi are given by

Fi =
Nki

i

ki!(i!)2ki

Ni = (2i)((2i − 2)!!)2 = 2i(2i − 2)2(2i − 4)2 · · · 22 = (2i)−122i(i!)2 (A.29)
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from which we have

Fi =
2(2i−1)ki

ikiki!
(A.30)

A simple manipulation can be used to rewrite (A.28) as

〈(tr Φ2)M (tr (Φ†)2)M 〉
= 22M (M !)2

∑

K

2−KN2K
∑

{ki}

∏

i

1

ikiki!
(A.31)

We can associate the set ki with a conjugacy class in SM , described by ki cycles of length

i, so that K is the total number of cycles. Rewriting (A.31) in terms of conjugacy classes

[SM ], and then as a sum over SM , we get

〈(tr Φ2)M (tr (Φ†)2)M 〉 =22MM !
∑

[σ]∈[SM ]

M !

|Sym([σ])|

(

N2

2

)C([σ])

=22MM !
∑

[σ]∈[SM ]

|[σ]|
(

N2

2

)C([σ])

=22MM !
∑

σ∈SM

(

N2

2

)C(σ)

(A.32)

where |[σ]| is the number of symmetric group elements in the conjugacy class [σ]. C([σ]) is

the number of cycles in [σ]. |Sym([σ])| is the size of the symmetry group of the permutation

σ. The above happens to be the formula for the dimension of the totally symmetric

representation [M ] of U(N2/2). If λ = N2/2 then we get

〈tr (Φ2)M tr (Φ†2)M 〉 =22MM !λ(λ + 1)(λ + 2) · · · (λ + M − 1) (A.33)

Proof: The derivation of (A.31) can be related to the class algebra multiplication of

[2M ].[2M ] in S2M . A useful technique for the calculation is based on the realization of these

operators in V ⊗2M in terms of U(N) Casimir operators. For example

T[2] = Σσ∈[2] σ =
1

2

∑

a1 6=a2

ρa1(Ei1i2)ρa2(Ei2i1) ≡
1

2
E[2] (A.34)

where Ei1i2 is the matrix with 1 in the (i1, i2) entry and zero elsewhere. The sum of

elements in a conjugacy class can in general be related to such Casimirs ( called cycle

operators ) by equations of the form

T~l ≡
1

|Sym([~l])|
E~l (A.35)

This is described in detail in [69, 70] and can be used to give a diagrammatic algorithm

for computation of products in the class algebra of symmetric groups [71]. The El1,l2,...

operators are associated with circles having crosses marked on them, with the number of

crosses being l1, l2, . . .. When we are multiplying two of these operators we sum over ways
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Figure 22: Merging two crosses

Figure 23: First two types of diagrams for multiplication [2M ].[2M ]

of joining the crosses from the two sets, with lines. These lines are then simplified with the

move in figure 22. This move is a diagrammatic representation of the effect of multiplying

the U(N) generators.

The E[2M ] operator can be represented diagrammatically by M oriented circles with

two crosses each, which we will describe in words as M copies of C2. When multiplying,

we can draw the circles from the first E[2M ] on the left and those from the second on the

right. The multiplication involves a few basic products of the form

C2.C2 ∼ C1.C1

(C2)
2.(C2)

2 ∼ C2.C2

(C2)
3.(C2)

3 ∼ C3.C3

... (A.36)

In the first type of multiplication, there are lines joining crosses from one circle on the left

and one on the right. In the second type of multiplication, there are lines joining crosses

from two circles on the left and two circles on the right. These two types of multiplication

are shown in figure 23. Let k1 be the number of (C1)
2 coming from the multiplications of

the first type. The k2 is the number of (C2)
2 coming from multiplications of the second

type etc. The resulting diagram corresponds to the cycle operator E12k1 ,22k2 ,..., related to

the conjugacy class [12k1 , 22k2 , . . .], which is weighted, according to (A.15), by N2K .
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The T operators we are multiplying are related to E operators by the factor

c1 =

(

1

|Sym(T2M )|

)2

(A.37)

To get a multiplication labeled by k1, k2 . . . we need to choose k1 operators C2 from

the M in E[2M ], 2k2 operators C2 from the M etc. This gives a factor

M !
∏

i(iki)!
(A.38)

We square because the same factor occurs in each of the T2M we are multiplying, to get

c2 =

(

M !
∏

i(iki)!

)2

(A.39)

Given the iki copies of C2 we group them in ki sets of i in the following number of ways

∏

i

(iki)!

(i!)kiki!
(A.40)

We again square since this arises from each factor in the product

c3 =
∏

i

(

(iki)!

(i!)kiki!

)2

(A.41)

There are ki! ways of connecting the ki copies of circles with two crosses, from the two

factors giving

c4 = ki! (A.42)

Having fixed a set of i C2 to be connected to another i C2 there is a factor of

(2i)(2i − 2)2(2i − 4)2 . . . 22 = (2i)((2i − 2)!!)2

= Ni (A.43)

Since this occurs ki times we have

c5 = Nki
i (A.44)

The resulting E[i2ki ]-operator must be converted to T[i2ki ] by a factor

c6 = |Sym([i2ki ])| (A.45)

Finally there is a factor of

c7 =
|Sym[2M ]||2
|Sym[i2ki ]| (A.46)

which arises in converting the trace normalization problem to a class algebra problem .

Collecting the factors c1 . . . c7 we get Fi given in (A.28).
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Φ† Φ†

Φ†

Φ†
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�

�
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�

�

Figure 24: For A2
M

there are two different ways of contracting a tr (Φ†2) with two Φ†s.

A.4.2 The recursion method for ||(tr (Φ2))M ||
A neat derivation of (A.18) and (A.24) can be obtained by recursion.

Let A1
M be defined by

A1
M ≡ 〈(tr (Φ))M (tr (Φ†))M 〉 (A.47)

Now choose a single Φ and Wick contract it with a single Φ† (of which there are

M choices). This Wick contraction gives us a factor of N and leaves us with M − 1

uncontracted Φs and M − 1 uncontracted Φ†. This gives us a recursion relation

A1
M = MNA1

M−1 (A.48)

Applying this M times and noting that A1
0 = 1 we get

A1
M = M !NM (A.49)

as expected.

Let A2
M be defined by

A2
M ≡ 〈(tr (Φ2))M (tr (Φ†2))M 〉 (A.50)

Now choose a tr (Φ2) and Wick contract the two Φs with two Φ†s. There are two different

ways of doing this. The first way, on the left of figure 24, is to contract them with a tr (Φ†2)

giving a factor of N2. There are M tr (Φ†2)s and two ways of pairing up the Φs and Φ†s.

This leaves us with M − 1 uncontracted tr (Φ2)s and M − 1 uncontracted tr (Φ†2)s. The

other way, on the right of figure 24, is to pair up the Φs with Φ†s from different tr (Φ†2)s.

There are 2M choices for the first Φ† and 2M − 2 for the second. Again this leaves us with

M − 1 uncontracted tr (Φ2)s and M − 1 uncontracted tr (Φ†2)s. Altogether we have

A2
M =2M(N2 + 2M − 2)A2

M−1

=22M(λ + M − 1)A2
M−1 (A.51)
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where λ = N2/2. This becomes

A2
M = 22MM !

(λ + M − 1)!

(λ − 1)!
(A.52)

as expected.

A.5 J = L,L/2 for both normalizations

We know from [17] that

〈tr (ΦL)tr (Φ†L)〉 =
1

L + 1

(

(N + L)!

(N − 1)!
− N !

(N − L − 1)!

)

(A.53)

by considering the equation

〈tr (ΦL)tr (Φ†L)〉 =
∑

R

χR (L) χR (L) fR (A.54)

and noting that χR (L) is only non-zero for hooks.

If L = N we find

〈tr (ΦN )tr (Φ†N )〉 ∼ (2N)!

N !
(A.55)

For the transition of a sphere giant we get

〈χ[1N ](Φ
†)(tr (ΦN ))〉2

||χ[1N ](Φ)||2 ||tr (ΦN )||2 ∼ (N !)2

(2N)!

∼(πN)
1
2 2−2N (A.56)

which is very small. For the AdS transition we get

〈χ[N ](Φ
†)(tr (ΦN ))〉2

||χ[N ](Φ)||2 ||tr (ΦN )||2 ∼(2N − 1)!

(N − 1)!

N !

(2N)!

=
1

2
(A.57)

which is a large probability.

We can also write down a formula for J = L/2

〈(tr (ΦL/2))2(tr (Φ†L/2))2〉 =
∑

R

∑

R1,R2,S1,S2

g(R1, R2;R)g(S1, S2;R)

χR1 (L/2) χR2 (L/2)χS1 (L/2) χS2 (L/2) fR (A.58)

given that we know χR1 (L/2) will only be non-zero for hooks χ[(L/2−r),1r ] (L/2) = (−1)r.

This gives us

〈(tr (ΦL/2))2(tr (Φ†L/2))2〉 =
∑

R

∑

r1,r2,s1,s2

(−1)r1+r2+s1+s2g([(L/2−r1), 1
r1 ], [(L/2−r2), 1

r2 ];R)

g([(L/2 − s1), 1
s1 ], [(L/2 − s2), 1

s2 ];R)fR (A.59)

where ri and si are integers characterizing the hooks.

Another approach to finding (A.58) is to use the Murnaghan-Nakayama rule on

〈(tr (ΦL/2))2(tr (Φ†L/2))2〉 =
∑

R

(χR (L/2 ◦ L/2))2 fR (A.60)
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Figure 25: Diagram for p2

Figure 26: Diagram for q+
2

A.6 General formula for ||(tr Φ)M1(tr Φ2)M2||2

Using the diagrammatic method described in section A.4.1 we obtain a general formula

||(tr Φ)M1(tr Φ2)M2 ||2 =

(M2!)
2(M1!)

222M2NM1
∑

{ki,pj ,q+
l ,q−m}

N2k2−k−2q

(M1 − 2q − p)!

∏

i,j,l,m

1

ikiki!

1

pj!

1

q+
l !

1

q−m!
(A.61)

where the sum is over the sets of non-negative integers {ki, pj , q
+
l , q−m} satisfying

• k ≡ ∑

i ki

• p ≡ ∑

i pi

• q ≡ ∑

i q
+
i =

∑

i q
−
i

All the sums above start at 1. The ki count diagrams of the type encountered in sec-

tion A.4.1. The pi count diagrams with i 2-cross circles on each side. For example, p2

counts diagrams of the type in figure 25. q+
i counts diagrams with i 2-cross circles on the

left and (i − 1) 2-cross circles on the right. The diagram in figure 26 shows the types of

diagrams counted by q+
2 . q−i counts diagrams related to those counted by q+

i by a left-right

reflection. There are also constraints

• 2q + p ≤ M1
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• M2 =
∑

i iki +
∑

j jpj +
∑

l l(q
+
l + q−l ) − q

We know that if LB ≡ ∑

i iki and λ ≡ N2/2

∑

{ki}|
P

i iki=LB

λkLB !
∏

i

1

ikiki!
=

(λ + LB − 1)!

(λ − 1)!
(A.62)

so (A.61) becomes

||(tr (Φ))M1(tr (Φ2))M2 ||2 =

(M2!)
2(M1!)

222M2NM1
∑

LB ,{pj ,q+
l ,q−m}

2−2q

(M1 − 2q − p)!LB !

(λ + LB − 1)!

(λ − 1)!

∏

j,l,m

1

pj !

1

q+
l !

1

q−m!

(A.63)

where the sum is over the non-negative integer LB and the sets of non-negative integers

{pj , q
+
l , q−m} satisfying

• p ≡ ∑

j pj

• q ≡ ∑

l q
+
l =

∑

m q−m

• 2q + p ≤ M1

• M2 =
∑

i iki +
∑

j jpj +
∑

l l(q
+
l + q−l ) − q

We can simplify this further. Let

Q± =
∑

i

iq±i

P =
∑

i

ipi

By using the generating function e
y

1−x we can show that the sum over pi constrained by

p, P is given by

∑

pi

1
∏

pi!
=

(P + p − 1)!

p!P !
≡ S(P, p) (A.64)

The same sum appears for Q±. Hence we can rewrite the norm as

||(tr (Φ))M1(tr (Φ2))M2 ||2 = (M2!)
2(M1!)

222M2NM1

∑

LB ,Q±,P,p,q

S(P, p)S(Q+, q)S(Q−, q)
2−2q

(M1 − 2q − p)!LB !

(λ + LB − 1)!

(λ − 1)!

(A.65)

where M2 = LB + P + Q+ + Q− − q and 2q + p ≤ M1.
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We have checked that the above formula specializes correctly to previously derived

formulas in the cases M1 = 0 ( with M2 arbitrary ) and M2 = 0 ( with M1 arbitrary). In

the case M1 = 1 with M2 general it gives.

||tr (Φ)(tr (Φ2))M2 ||2 =(M2!)
222M2N

∑

LB≤M2

1

LB!

(λ + LB − 1)!

(λ − 1)!

=M2!2
2M2N

(λ + M2)!

λ!
(A.66)

The case M2 = 2 can also be expanded.

A.7 More general results

Some relevant computations are in appendix E of [17]. Using these techniques we get, for

the overlap between an S-giant and multi-KK

〈χ[1L](Φ
†)tr (Φc1)tr (Φc2) · · · tr (Φck)〉

=
∑

R1,...Rk

g(R1, R2, . . . , Rk; [1
L])f[1L]χR1(c1)χR2(c2) . . . χRk

(ck)

= (−1)c1+c2...+ck−k N !

(N − L)!
= (−1)L−k N !

(N − L)!
(A.67)

where
∑

i ci = L by charge conservation.

For single AdS giant, we have

〈χ[L](Φ
†)tr (Φc1)tr (Φc2) . . . tr (Φck)〉

=
∑

R1,...Rk

g(R1, R2, . . . , Rk; [L])f[L]χR1(c1)χR2(c2) . . . χRk
(ck)

= fL =
(N + L − 1)!

(N − 1)!

A special case of interest is

〈tr (ΦL)χR(Φ†)〉 (A.68)

This is a character of the symmetric χR({L}), where {L} is a permutation with a single

cycle of length L. This character is non-zero only if R is a hook. Among the giants, this

includes a single sphere giant or a single AdS giant, but not two AdS giants or two Sphere

giants.

To compute the above in overlap normalization, we need to look at correlators of traces.

Using the notation above it is relatively simple to prove a general formula for the products

of traces

〈tr (Φc1) · · · tr (Φck)tr (Φ†d1) · · · tr (Φ†dl)〉 (A.69)

where
∑

i ci =
∑

j dj = n. If ci is a cycle of length ci, e.g. (12 . . . ci), then

〈tr (Φc1) · · · tr (Φck)tr (Φ†d1) · · · tr (Φ†dl)〉 =
∑

R

χR (c1 · · · ck) χR (d1 · · · dl) fR (A.70)
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Now use the same trick on the DimR to get

〈tr (Φc1) · · · tr (Φck)tr (Φ†d1) · · · tr (Φ†dl)〉 =
n!

|[c1 · · · ck]|
∑

σ∈[c1···ck]

NC((d1···dl)
−1σ) (A.71)

It is fairly easy to show that

|[c1 · · · ck]| =
n!

1l1 l1!2l2 l2! · · ·mlm lm!
(A.72)

where l1 of the cycles have length 1, l2 of length 2, etc. How can we work this out? There

are a total of n! ways of slotting n things into n boxes. But some of these configurations

will be the same. For example, if we mix up the lj boxes of length j it won’t make any

difference, giving us a factor of lj !. Also in each box we can cycle round the entries without

changing it. This gives us j per lj box.

If we plug this into (A.71) we get

〈tr (Φc1) · · · tr (Φck)tr (Φ†d1) · · · tr (Φ†dl)〉
= 1l1 l1!2

l2 l2! · · ·mlm lm!
∑

σ∈[c1···ck]

NC((d1···dl)
−1σ) (A.73)

If {ci} = {di} (the order doesn’t matter) then we can find the leading term

〈tr (Φc1) · · · tr (Φck)tr (Φ†c1) · · · tr (Φ†ck)〉
= 1l1 l1!2

l2 l2! · · ·mlmlm!
(

Nn + O(Nn−1)
)

(A.74)

B. Conditional probabilities

Consider operators Oi for i = 1, 2, 3 with zero charge. Given the starting state O1 the joint

probability of getting O2 and O3 as the outgoing states is

P (O2,O3) =
|〈O†

1O2O3〉|2
〈O†

1O1〉G=1〈O†
2O2〉〈O†

3O3〉
(B.1)

The conditional probability of getting O2 given O3 is defined as

P (O2|O3) =
P (O2,O3)

P (O3)
(B.2)

where the probability of getting O3 in the two outgoing states is given by

P (O3) =
∑

i

P (Oi,O3) =
∑

i

|〈O†
1OiO3〉|2

〈O†
1O1〉G=1〈O†

iOi〉〈O†
3O3〉

(B.3)

Similarly

P (O3|O2) =
P (O2,O3)

P (O2)
(B.4)

From these it is clear that the Bayesian rule

P (O3|O2)

P (O2|O3)
=

P (O3)

P (O2)
(B.5)

is satisfied.
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C. The metric, Euclidean time reversal and orientation

Consider the effect of a change of coordinates u = z̄−1 on the operator ∂zZ(z). By the

chain rule, we get

∂uZ(u) = −z̄2∂z̄Z(z̄) (C.1)

Note that the effect of this coordinate change is to reverse Euclidean time.

As in the general discussion of the Euclidean adjoint in [37] (see also section 3.1) we

are supposed to follow the Euclidean time reversal with the usual operation of conjugation.

In this case, where we are working with complex coordinates, we should also complex

conjugate the coordinate. This leads to

−z2∂zZ
∗ (C.2)

This is exactly what we need to get the desired metric. When Z is a matrix, the final

complex conjugation on Z is accompanied by a matrix transposition.

Note that the zw = 1 relation we use in the gluing procedure is an orientation preserv-

ing map. In the 4d discussion , we use an orientation reversing map. The reason why both

are acceptable ways of expressing the Hilbert space inner product is that the additional

coordinate-conjugation of the 2d case is an orientation reversing map.

D. Sphere factorization

In this section, we will explicitly verify sphere factorization by gluing two S2 correlators

to give another S2 correlator. This allows us to realize, in a very concrete way, CFT

factorization. Denote the two Riemann spheres to be glued by M and N . M has puncture

P located at z1 = 0 with z1 the local coordinate for a chart containing the puncture. N

has puncture Q located at z2 = 0 with z2 the local coordinate for a chart containing the

puncture. Choose an arbitrary constant r > 1. Assume z1 and z2 are well defined in the

disks |z1| < r and |z2| < r. The gluing then has two steps

• Cut the disks |z1| < 1
r and |z2| < 1

r from M and N .

• Sew M and N together by identifying points on the annulus 1
r < |z1| < r that satisfy

z1z2 = 1

To apply the CFT factorization equation, we need the inverse of the product on the

space of local operators {Ai(z, z)}

Gij = 〈i|j〉 =
〈

A†′
i (Q)Aj(P )

〉

S2

which also gives the Hermitian inner product on the set of states, as described in section 4.2.

Explicitly, we need to evaluate

〈∂nZ(P )∂mZ†(Q)〉 = lim
z1,z2→0

〈∂nZ(z1)∂
mZ†(z2)〉
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First, consider the case that n ≥ m. We perform this calculation in the z1 coordinate.

z2 = 0 corresponds to z1 = ∞, so that the inner product that this correlator computes is

the one discussed in section 3.4 of [36]. The simplest case is m = n = 1. Setting

z′2 =
1

z2

we have the transformation

∂Z†(z2) → −(z′2)
2∂Z†(z′2)

so that

〈∂Z(P )∂Z†(Q)〉 = lim
z1,z2→0

〈∂Z(z1)∂Z†(z2)〉
= − lim

z1→0
lim

z′2→∞
(z′2)

2〈∂Z(z1)∂Z†(z′2)〉

= lim
z1→0

lim
z′2→∞

(z′2)
2 1

|z1 − z′2|2
= 1 (D.1)

Next, consider n = 2 and m = 1

〈∂2Z(P )∂Z†(Q)〉 = lim
z1,z2→0

〈∂2Z(z1)∂Z†(z2)〉
= − lim

z1→0
lim

z′2→∞
(z′2)

2〈∂2Z(z1)∂Z†(z′2)〉

= lim
z1→0

lim
z′2→∞

(z′2)
2 1

|z1 − z′2|3
= 0 (D.2)

Now set n = 2 and m = 2. We have

∂2Z†(z2) →
∂2z′2
∂z2

2

∂Z†(z′2) +

(

∂z′2
∂z2

)2

∂2Z†(z′2) = 2(z′2)
3∂Z†(z′2) + (z′2)

4∂2Z†(z′2)

so that

〈∂2Z(P )∂2Z†(Q)〉 = lim
z1,z2→0

〈∂2Z(z)∂2Z†(z2)〉

= lim
z1→0

lim
z′2→∞

[

2(z′2)
3〈∂2Z(z1)∂Z†(z′2)〉 + (z′2)

4〈∂2Z(z1)∂
2Z†(z′2)〉

]

= 2 (D.3)

The general result is

〈∂nZ(P )∂mZ†(Q)〉 = m((m − 1)!)2δm,n (D.4)

Consequently
[

〈∂nZ(P )∂mZ†(Q)〉
]−1

=
1

m((m − 1)!)2
δm,n

This result also follows from the state operator map: using

∂kZ ↔ −i(k − 1)!α−k

∂kZ† ↔ −i(k − 1)!α†
−k
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our general result translates into the identity

〈0|(i(p − 1)!αp)(−i(k − 1)!α†
−k|0〉 = k

[

(k − 1)!
]2

δp,k (D.5)

We are now ready to explicitly verify the CFT factorization equation, which reads

〈∂Z(z1)∂Z†(w1)〉 =
∑

m,n

〈∂Z(z1)∂
nZ†(P )〉

[

〈∂nZ(P )∂mZ†(Q)〉
]−1

〈∂mZ(Q)∂Z†(w1)〉

(D.6)

Start with the r.h.s. which gives

∑

m,n

〈∂Z(z1)∂
nZ†(P )〉

[

〈∂nZ(P )∂mZ†(Q)〉
]−1

〈∂mZ(Q)∂Z†(w1)〉

=
∑

m

〈∂Z(z1)∂
mZ†(0)〉 1

m((m − 1)!)2
〈∂mZ(0)∂Z†(w1)〉

=
∑

m

m!

zm+1
1

1

m((m − 1)!)2
m!

wm+1
1

=
1

z1w1

∑

m

m

zm
1 wm

1

= − w1

z1w1

∂

∂w1

∑

m

1

zm
1 wm

1

= − 1

(1 − z1w1)2
(D.7)

Now, evaluating the l.h.s.

〈∂Z(z1)∂Z†(w1)〉 = −(z′)2〈∂Z(z1)∂Z†(z′)〉
− (z′)2

(z′ − z1)2

− 1

w2
1

(

1
w1

− z1

)2

= − 1

(1 − z1w1)2
(D.8)

completing the demonstration.

E. The Weierstrass elliptic function

E.1 Limits of the Weierstrass elliptic function

If x ∼ x + 2T1 ∼ x + 2iT2 where T1 and T2 are real then we can find some limits of the

Weierstrass elliptic function.

If T2 → ∞ then we have

℘(x) =

(

π

2T1

)2 (

1

sin2(πx/2T1)
− 1

3

)

(E.1)
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which for x = is gives

℘(x) =

(

π

2T1

)2 (

− 1

sinh2(πs/2T1)
− 1

3

)

(E.2)

If T2 is now finite and x = iT2 then we have

℘(iT2) =
1

(iT2)2
+

∑

m,n∈Z|(m,n)6=(0,0)

{

1

(iT2 + 2mT1 + 2niT2)2
− 1

(2mT1 + 2niT2)2

}

(E.3)

Notice that the first term is the (m,n) = (0, 0) term of the first term in the sum. Then

rewrite the sum for the second term in the sum

∑

m,n∈Z|(m,n)6=(0,0)

=
∑

m,n∈Z|n 6=0

+
∑

n=0,m∈Z|m6=0

(E.4)

so that we get

℘(iT2) =
∑

m,n∈Z

1

(2mT1 + (2n + 1)iT2)2
−

∑

m,n∈Z|n 6=0

1

(2mT1 + 2niT2)2
−

∑

m∈Z|m6=0

1

(2mT1)2

=
∑

m,n∈Z|n 6=0

1

(2mT1 + niT2)2
− 2

∑

m,n∈Z|n 6=0

1

(2mT1 + 2niT2)2
− π2

12T 2
1

=

(

π

2T1

)2




∑

n∈Z|n 6=0

{

−cosech2(nπT2/2T1) + 2cosech2(nπT2/T1)
}

− 1

3





=

(

π

2T1

)2
(

−4
∑

n>0

{coth(nπT2/T1)cosech(nπT2/T1)} −
1

3

)

(E.5)

which tends up to the correct limit (E.2) as T2 → ∞, i.e. −π2/(12T 2
1 ).

E.2 The method of images and the Weierstrass function

For a torus in x coordinates with x ∼ x + 1 ∼ x + τ we might näıvely try to compute the

correlator by the method of images (cf. [72] where they use this method for correlators on

S1). This would involve summing the correlators from x1 to each of the images of x2 on

the entire x plane. If x = x1 − x2 we would have

Z−1
T 2

〈

∂Z†(x1)∂Z(x2)
〉

G=1,τ
= − 1

x2
−

∑

m,n∈Z|(m,n)6=(0,0)

1

(x + n + mτ)2
(E.6)

Unfortunately this is divergent. In order to get a physical quantity we must regulate

this sum by subtracting the divergent part to get the Weierstrass elliptic function

Z−1
T 2

〈

∂Z†(x1)∂Z(x2)
〉

G=1,τ
= − 1

x2
−

∑

m,n∈Z|(m,n)6=(0,0)

{

1

(x + n + mτ)2
− 1

(n + mτ)2

}

≡ −℘(x; τ). (E.7)
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In our conventions we have for a complex scalar field Z(x, x)

Z−1
T 2

〈

Z†(x1, x1)Z(x2, x2)
〉

τ
= G(x1, x1;x2, x2) = − ln

∣

∣

∣
θ1

(

x1−x2

∣

∣

∣
τ
)∣

∣

∣

2
+

2π

τ2
[Im(x1 − x2)]

2

(E.8)

so that

Z−1
T 2

〈

∂x1Z
†(x1)∂x2Z(x2)

〉

τ
= −Z−1

T 2 ∂2
x1

〈

Z†(x1)Z(x2)
〉

τ

= ∂2
x (log ϑ11 (x; τ)) − 2π

τ2

= −℘ (x; τ) (E.9)

The divergences in the näıve method of images correlator (E.6) can be understood to

arise because in the mode decomposition we have included the zero mode. Removing this

zero mode is equivalent to the regulated correlator in (E.7).

F. Windings from torus factorization sums

In what follows, we assume that the metric on the space of local operators has been

diagonalized Gij = 〈i|i〉δij . According to factorization, the two point function of ∂Z on the

torus is

〈∂Z†(p1)∂Z(p2)〉T 2 =(qq)−c/24
∑

ij

∑

kl

qhjqh̃jGijGkl〈∂Z†(p1)A′
j(z

′, z̄′ = 0)Al(z, z̄ = 0)〉S2

× 〈A†
k(w, w̄ = 0)A†′

i (w′, w̄′ = 0)∂Z(p2)〉S2 (F.1)

To demonstrate how this sum gives the right correlation function on the torus, it is in-

structive to analyze a few terms explicitly.

For a correlation function to be non-zero in the free field theory, we need to con-

sider the correlator of an even number of fields. One type of term which enters is

when A′
j(z

′, z̄′ = 0) = A†′
i (w′, w̄′ = 0) = 1 and Al(z, z̄ = 0) = ∂lZ(z, z̄ = 0),

A†
k(w, w̄ = 0) = ∂kZ†(w, w̄ = 0). Summing over operators of this type, we have (the

double sum collapses since 〈∂kZ†(w, w̄ = 0)∂lZ(z, z̄ = 0)〉S2 ∝ δlk)

(qq)−c/24
∑

l

〈∂Z†(p1)∂
lZ(z, z̄ = 0)〉S2

1

〈l|l〉 〈∂
lZ†(w, w̄ = 0)∂Z(p2)〉S2 (F.2)

which, explicit evaluation shows, is the correlator to go from p1 to p2 passing through the

point z = z̄ = 0. Another type of term which enters is when Al(z, z̄ = 0) = A†
k(w, w̄ =

0) = 1 and A′
j(z

′, z̄′ = 0) = ∂jZ ′(z′ = z̄′ = 0) and A†′
i (w′, w̄′ = 0) = ∂iZ†′(w′, w̄′ = 0).

Summing over operators of this type, we have

(qq)−c/24
∑

i

qhiqh̃i〈∂Z†(p1)∂
iZ ′(z′ = z̄′ = 0)〉 1

〈i|i〉 〈∂
iZ†′(w′, w̄′ = 0)∂Z(p2)〉 (F.3)

which is the correlator to go from p1 to p2 passing through point z′ = z̄′ = 0.
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Next, consider the contribution when we sum over the terms A′
j(z

′, z̄′ = 0) =

∂jZ†′(z′, z̄′ = 0), A†′
i (w′, w̄′ = 0) = ∂iZ ′(w′, w̄′ = 0) and Al(z, z̄ = 0) =: ∂n1Z(z, z̄ =

0)∂n2Z(z, z̄ = 0) :, A†
k(w, w̄ = 0) =: ∂m1Z†(w, w̄ = 0)∂m2Z†(w, w̄ = 0) : with n1 ≥ n2 and

m1 ≥ m2 to avoid over counting. We make use of the fact that in the free field theory ex-

pectations of a product of 2n operators factorize into sums over n products of expectations

of pairs of operators (Wick’s theorem). Among the terms that appear, we obtain

〈∂Z†(p1)∂
n1Z(z, z̄ = 0)〉S2 〈∂n1Z†(w, w̄ = 0)∂iZ ′(w′, w̄′ = 0)〉S2

〈∂n1Z†(w, w̄ = 0)∂n1Z(z, z̄ = 0)〉S2

× 1

〈∂iZ†′(z′, z̄′ = 0)∂iZ ′(w′, w̄′ = 0)〉S2

× 〈∂iZ†′(z′, z̄′ = 0)∂n2Z(z, z̄ = 0)〉S2 〈∂n2Z†(w, w̄ = 0)∂Z(p2)〉S2

〈∂n2Z†(w, w̄ = 0)∂n2Z(z, z̄ = 0)〉S2

(F.4)

To interpret this expression note that the first factor (after summing on n1) gives the

amplitude to go from p1 to w′ = w̄′ = 0, passing through z = z̄ = 0; the last factor

(after summing on n2) gives the amplitude to go from z′ = z̄′ = 0 to p2 passing through

z = z̄ = 0. Finally, after summing on i we get the amplitude to go from p1 to p2 along a

path with winding number 1.

Terms for which A′
j(z

′, z̄′ = 0) has n operators ∂Z† appearing and Al(z, z̄ = 0) has

n+1 operators ∂Z appearing give the amplitudes with winding number n; terms for which

A′
j(z

′, z̄′ = 0) has n + 1 operators ∂Z appearing and Al(z, z̄ = 0) has n operators ∂Z†

appearing give the amplitudes with winding number −n.

G. Some results with correct normalizations

Here we give the calculations for section 6.

G.1 Sphere factorization

We want to work out

P (R1(r = ex,Ωi), R2(r = ex,Ωi) → R(r = 0))

=

∣

∣

∣

〈

R†
1(r = ex,Ωi)R

†
2(r = ex,Ωi)R(r = 0)

〉

∣

∣

∣

2

〈

R†
2(s = ex,Ω′

i)R
†
1(s = ex,Ω′

i)R1(r = ex,Ωi)R2(r = ex,Ωi)
〉〈

R†R
〉

(G.1)

for sphere and AdS giants.

For two sphere giant [1N/2] combining into another sphere giant [1N ]

∣

∣

〈

[1N/2]†(r = ex)[1N/2]†(r = ex)[1N ](r = 0)
〉∣

∣

2

〈

[1N/2]†(s = ex)[1N/2]†(s = ex)[1N/2](r = ex)[1N/2](r = ex)
〉〈

[1N ]†[1N ]
〉

=
g

(

[1N/2], [1N/2]; [1N ]
)2

f2
[1N ]

e−4Nx

∑

S g
(

[1N/2], [1N/2];S
)2

fSe−2Nx(ex − e−x)−2Nf[1N ]

(G.2)
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where g
(

[1N/2], [1N/2];S
)

is a Littlewood-Richardson coefficient. In the large x limit we

get

P ([1N/2], [1N/2] → [1N ]) =
f[1N ]

∑

S g
(

[1N/2], [1N/2];S
)2

fS

< 1 (G.3)

The fusion of the two vertical Young diagrams gives a sum of representations, with column

lengths (N/2 + i,N/2 − i). Hence the denominator can be written as

N/2
∑

i=0

N !(N + 1)!

(N/2 − i)!(N/2 + i + 1)!
(G.4)

The probability is less than one because f[1N ] is included in the sum. A similar formula

can be written for two AdS giants [N/2] combining into another AdS giant [N ]. Now the

denominator becomes

N/2
∑

i=0

(3N/2 + i − 1)!(3N/2 − i − 2)!

(N − 1)!(N − 2)!
(G.5)

G.2 G = 1 factorization

We want to work out

P
(

R(r = ex,Ωi) → R′
1(r

′ = 0)R2(r = 0)
)

= e−2T∆1

∣

∣

〈

R†(r = ex,Ωi)R
′
1(r

′ = 0)R2(r = 0)
〉∣

∣

2

〈

R†(s = ex,Ωi)R(r = ex,Ωi)
〉

G=1

〈

R†
1R1

〉〈

R†
2R2

〉
(G.6)

in the large T limit. Here
∑

k≥1 kcosech(kT ) ∼ 2e−T . We will calculate the probability for

R at r = eT/2, which will maximize the distance of the insertion of R from the boundaries

of the cut S4.

For the transition of an AdS giant [N ] into to two smaller AdS giants [N/2]

e−2T∆1

∣

∣

〈

[N ]†(r = eT/2)[N/2]′(r′ = 0)[N/2](r = 0)
〉∣

∣

2

〈

[N ]†(s = eT/2)[N ](r = eT/2)
〉

G=1

〈

[N/2]†[N/2]
〉〈

[N/2]†[N/2]
〉

∼
g([N/2], [N/2]; [N ])2f2

[N ]e
−TNe−2N(T/2)

e−2N(T/2)(2e−T )Nf[N ]f
2
[N/2]

=
1

2N

f[N ]

f2
[N/2]

=
1

2N

(2N − 1)!(N − 1)!

((3N/2 − 1)!)2

=
1

2N

9

8

(2N)!N !

((3N/2)!)2 ∼ 1

2N

9

8

√
4πN (2N)2Ne−2N

√
2πNNNe−N

3πN(3N/2)3N e−3N

=
3√
8

(

16

27

)N

(G.7)
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For a sphere giant [1N ] evolving into two smaller sphere giants [1
N
2 ] we get

∼ 1

2N

f[1N ]

f2
[1N/2]

=
1

2N

((N/2)!)2

N !

∼ 1

2N

πN(N/2)N e−N

√
2πNNNe−N

=

√

πN

2

1

22N
(G.8)

G.2.1 Giants to KK gravitons

Here we must modify our factorization equations because the trace basis is not a diagonal

basis. Fortunately there is a dual basis to the trace basis which we shall call the null

basis in line with its use in [22]. A fuller explanation of this null basis will be given in a

forthcoming paper.

To start with we will only be concerned with the index structure of the correlators.

Define a set of elements σi in the permutation group Sn where each σi is an element of a

different conjugacy class of Sn, i = 1, . . . p(n) where p(n) is the number of partitions of n.

The trace basis is given by the p(n) operators

tr (σiΦ) =
∑

R(n)

χR(σi)χR(Φ) (G.9)

Define the p(n) elements of the null basis by

ξi(Φ) :=
|[σi]|
n!

∑

R(n)

1

fR
χR(σi)χR(Φ) (G.10)

where |[σi]| is the size of the conjugacy class of σi. This basis is useful because it is dual

to the trace basis. The matrix of correlators of the null basis is the inverse of the matrix

of correlators of the trace basis. To prove this we work out

〈ξi(Φ
†)ξj(Φ)〉 =

|[σi]|
n!

|[σj ]|
n!

∑

R(n)

1

fR
χR(σi)χR(σj) (G.11)

and

〈tr (σjΦ
†)tr (σkΦ)〉 =

∑

S(n)

fSχS(σj)χS(σk) (G.12)

If we sum
∑

j over conjugacy classes of Sn we get

∑

j

〈ξi(Φ
†)ξj(Φ)〉〈tr (σjΦ

†)tr (σkΦ)〉

=
∑

j

∑

R

∑

S

|[σi]|
n!

|[σj ]|
n!

1

fR
χR(σi)χR(σj)fSχS(σj)χS(σk)

=
∑

R

|[σi]|
n!

χR(σi)χR(σk)

= δik (G.13)
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using the orthogonality properties of the characters of Sn (see appendix J). The null basis

is dual to the trace basis
∑

j

〈ξi(Φ
†)ξj(Φ)〉tr (σjΦ) = ξi(Φ) (G.14)

Now schematically (dropping spacetime dependence and modular parameters) the

genus 1 factorization we are interested in is
〈

R†R
〉

G=1
=

∑

ij

∑

kl

GijGkl
〈

R†tr (σjΦ)tr (σlΦ)
〉〈

tr (σkΦ
†)tr (σiΦ

†)R
〉

=
∑

i

∑

k

〈

R†tr (σiΦ)tr (σkΦ)
〉〈

ξk(Φ
†)ξi(Φ

†)R
〉

(G.15)

using the fact that Gij = 〈ξ†i ξj〉. Thus the probability of a transition to KK gravitons is

given by

P (R → tr (σiΦ), tr (σkΦ)) =

〈

R†tr (σiΦ)tr (σkΦ)
〉 〈

ξk(Φ
†)ξi(Φ

†)R
〉

〈R†R〉G=1

(G.16)

Now we shall do the computation for the transition of an AdS giant to two Kaluza-

Klein gravitons. We will drop the spacetime dependences and add them in at the end.

First we must work out the two three point functions
〈

[N ]†tr (Φ
N
2 )tr (Φ

N
2 )

〉

=
∑

R1,R2

χR1(N/2)χR2(N/2)
〈

[N ]†R1R2

〉

(G.17)

where (N/2) is understood to be a cycle of length N/2. Since [N ] can only be made from

other single-row representations, the only representations in the sum that contribute are

the AdS giants. We get
〈

[N ]†tr (Φ
N
2 )tr (Φ

N
2 )

〉

= f[N ] (G.18)

Similarly
〈

ξ(N/2)(Φ
†)ξ(N/2)(Φ

†)R
〉

=
∑

R1,R2

|[(N/2)]|
(N/2)!

|[(N/2)]|
(N/2)!

1

fR1

1

fR2

χR1(N/2)χR2(N/2)
〈

[N ]†R1R2

〉

=
4

N2

f[N ]

f2
[N/2]

(G.19)

where we have used |[(N/2)]| = (N/2− 1)!. Thus, adding back in the spacetime dependen-

cies, we have

P
(

[N ](r = ex) → tr (Φ
N
2 )(r′ = 0)tr (Φ

N
2 )(r = 0)

)

∼ 4

N2

3√
8

(

16

27

)N

(G.20)

and

P
(

[1N ](r = ex) → tr (Φ
N
2 )(r′ = 0)tr (Φ

N
2 )(r = 0)

)

∼ 4

N2

√

πN

2

(

1

2

)2N

(G.21)
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G.3 Higher genus factorization

For the transition of an AdS giant into n smaller AdS giants, using the guess involving kn

from section 6, we have

P ([N ] → n × [N/n]) =
1

kN
n

f[N ]

fn
[N/n]

=
1

kN
n

(2N − 1)!

(N − 1)!

(

(N − 1)!

(N + N/n − 1)!

)n

∼ 1

kN
n

1√
2

[

(n + 1)

n

]n
2 (2N)2Ne−2NNN(n−1)e−N(n−1)

[

(n+1)
n

]N(n+1)
NN(n+1)e−N(n+1)

=
1√
2

[

(n + 1)

n

]n
2

[

4nn+1

kn(n + 1)n+1

]N

(G.22)

in the large N limit.

For the transition of a Schur polynomial operator to KK gravitons we find in general

P (R → tr (σi1Φ), . . . tr (σinΦ)) =

〈

R†tr (σi1Φ) · · · tr (σinΦ)
〉 〈

ξin(Φ†)ξi1(Φ
†)R

〉

〈R†R〉G=n−1

=
∑

R1,...Rn

χR1(σi1) · · ·χRn(σin)g(R1, . . . Rn;R)fR

×
∑

S1,...Sn

χS1(σi1) · · ·χSn(σin)g(S1, . . . Sn;R)fR

× 1

fS1 · · · fSn

|[σi1 ]|
∆1!

· · · |[σin ]|
∆n!

1

fRk∆R
n

(G.23)

Fortunately this simplifies dramatically if R is an AdS (or sphere) giant, since, by the

Littlewood-Richardson rules, an AdS (or sphere) giant can only be made from other single

row (or column) representations. Further if σij are single length ∆j cycles for j = 1, . . . n

we know that χ[∆j ](∆j) = 1 (±1 for sphere) and also that |[(∆j)]| = (∆j − 1)!. Thus we

get

P ([∆R] → tr (Φ∆1), . . . tr (Φ∆n)) =
1

k∆R
n

1

∆1 · · ·∆n

f[∆R]

f[∆1] · · · f[∆n]

P ([1∆R ] → tr (Φ∆1), . . . tr (Φ∆n)) =
1

k∆R
n

1

∆1 · · ·∆n

f[1∆R ]

f[1∆1 ] · · · f[1∆n ]

(G.24)

H. Topology for 5D bulk and 4D boundary

H.1 Complements of graph neighborhoods in B5 and wedge sum of spheres

Take a ball B4 and remove n B4
◦ balls from its interior. Call the resulting surface X. X

is homotopic to an n-wedge of 3-spheres, ∨nS3, for which we know H3(∨nS3) = Z
n ( page

126 of [73] ).
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Now quotient X by the outer S3 boundary of the original B4. X/S3 is an S4 with

n B4
◦ balls removed, ∂(i)N(Vn, B5), which is homotopic to the complement of a connected

graph. There is an exact sequence ( page 114 of [73] )

· · · → H4(X/S3)
∂→ H3(S

3)
i?→ H3(X)

j?→ H3(X/S3)
∂→ H2(S

3) → · · · (H.1)

where i? is induced from the inclusion map on the chain group C3(S
3)

i→ C3(X) and j? is

induced from the quotient map C3(X)
j→ C3(X/S3).

We know that H4(X/S3) = {0} since there are no boundaryless chains in C4(X/S3).

We also have H3(A) = H3(S
3) = Z, H3(X) = H3(∨nS3) = Z

n and H2(A) = H2(S
3) = {0}.

Thus we get a short exact sequence

· · · → 0
∂→ Z

i?→ Z
n j?→ H3(∂

(i)N(Vn, B5))
∂→ 0 → · · · (H.2)

Because this is a short exact sequence i? is an injection, j? is a surjection, and im i? = ker j?.

Hence, by the first isomorphism theorem on the map j?, H3(∂
(i)N(Vn, B5)) = im j?

∼=
Z

n/ker j? = Z
n/Z = Z

n−1.

H.2 Cell complexes

The easiest way to compute the homology groups of Σ4(n−1) is in terms of its cell complex

decomposition. A k-cell is an open k-dimensional ball. We can build a manifold from

cells by starting with 0-cells, i.e. a set of points, and inductively attaching cells of higher

dimension. We attach the cells along the boundary of the cells. A k-cell has boundary

Sk−1. An attaching map identifies this boundary with some submanifold of the manifold

to which we are attaching the cell, even if that submanifold is of a lower dimension. For

example, we can attach a 2-cell (an open disk) to a 0-cell by identifying the boundary of

the 2-cell, a circle, with the 0-cell. This gives us a cell decomposition of the sphere S2. A

more formal description follows.

A cell complex or CW complex is a space X constructed in the following way

1. Start with a discrete set X0, the 0-cells of X.

2. Inductively, form the k-skeleton Xk from Xk−1 by attaching k-cells ek
α. Do this via

maps ϕα : Sk−1 → Xk−1 where Sk−1 is the boundary of the k-ball. This means

that Xk is the quotient space of Xk−1 t Bk
α (Bk

α is a closed k-ball here) under the

identifications x ∼ ϕα(x) for x ∈ ∂Bk
α. The cell ek

α is the homeomorphic image of the

open disk Bk
α − ∂Bk

α under the quotient map.

This is different to handlebody attachment because the boundary of the cell can be

attached to any part of Xk−1, even one of dimension lower than k − 1.

3. X = Xd for some d if X is finite-dimensional.

The cell decomposition is virtually identical to the handlebody decomposition because

a k-handle can be viewed as a thickening of a k-cell.
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Once we have a cell decomposition of a manifold we can compute the homology using

a boundary map on the cells. Let {ek
α} be the k-cells that we are attaching to the lower-

dimensional manifold Xk−1. The cellular boundary map dk can be computed in terms

of degrees. dk(e
k
α) =

∑

β dαβek−1
β where dαβ is the degree of the map Sk−1

α → Xk−1 →
Sk−1

β that is the composition of the attaching map of ek
α with the quotient map collapsing

Xk−1−ek−1
β to a point. If the boundary of ek

α is identified with a submanifold of dimension

k − 2 or lower then dk(e
k
α) = 0. Using this boundary map we can then compute the

homology in the standard way.

We will give a cell decomposition of our spaces so that we can compute the homology

groups.

H.3 Cell decomposition and homology for the complement of a connected graph

Since B5 \ N(Vn, B5) is homeomorphic to a thickening of the internal surface

∂(i)N(Vn, B5) × B1 it is also of the same homotopy type as the internal surface itself

∂(i)N(Vn, B5). The internal surface is in fact a deformation retract of B5 \ N(Vn, B5) (a

subspace R of a manifold X is a retract of X if there is a continuous map f : X → R such

that f |R = idR; if idX and f are homotopic then R is a deformation retract of X).

The cell decomposition of the 4-dimensional space ∂(i)N(Vn, B5) is as follows.

• Take a single 0-cell.

• Attach to it n 3-cells, with a map which identifies the boundaries of the 3-cells (S2s)

with the 0-cell. The space is now a wedge sum of n spheres S3, i.e. it is the disjoint

union of n spheres S3 with a point on each sphere identified to a single point. The

wedge sum of n spheres is sometimes written ∨nS3.

• Now wrap a 4-cell around the n 3-cells. The 4-cell has a boundary of S3. To glue

this to the n S3s divide it up into n pieces and glue each nth around each 3-sphere

sequentially.

For example for a 3-dimensional bulk we obtain the pants diagram by taking a point

and attaching three open intervals to it. We get three circles attached at a single point.

Then we attach an open 2-ball with its S1 boundary going around each of the three circles,

pinching around the 0-cell. See figure 27.

Note that for a connected Witten graph ∂(i)N(Vn, B5) is the same as the n-punctured

4-sphere on which we do our CFT. The n spheres S3 are the same as the boundaries of the

4-balls we cut out around each puncture.

For the set-up in general dimension see appendix I.1.

Now that we have the cell decomposition of ∂(i)N(Vn, B5) we can compute the homol-

ogy groups using our cellular boundary map, dk(e
k
α) =

∑

β dαβek−1
β where dαβ is the degree

of the attaching map.

The homology groups for the complement of a connected Witten graph are

• H4(∂
(i)N(Vn, B5)) = {0} since the only 4-cell e4 has a boundary, so ker d4 = {0}.
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Figure 27: The cell decomposition of the pants diagram for d = 3, n = 3. It has a 0-cell at the

center, 3 1-cells attached to the 0-cell to form the wedge sum of 3 circles S1 and a 2-cell with S1

boundary wrapping the 3 circles.

• H3(∂
(i)N(Vn, B5)) = Z

n−1. Let e3
α for α = 1, . . . n be the n 3-cells. The image of d4

is spanned by d4(e
4) =

∑

α e3
α since the boundary of e4 wraps the 3-cells sequentially.

The kernel of d3 is spanned by the n 3-cells e3
α, since their boundaries are identified

to a point. Thus H3 = ker d3/im d4
∼= Z

n−1.

• H2(∂
(i)N(Vn, B5)) = {0} since there are no 2-cells.

• H1(∂
(i)N(Vn, B5)) = {0} since there are no 1-cells.

• H0(∂
(i)N(Vn, B5)) = Z since it is arcwise connected.

The only non-trivial homology group, H3(∂
(i)N(Vn, B5)), can also be computed via a

short exact sequence of homology groups (see appendix H.1).

These homology groups satisfy the weak Morse inequalities. If ck is the number of

k-cells and bk is the kth Betti number then

ck ≥ bk (H.3)

for all k.

H.4 Cell decomposition and homology for the complement of a disconnected

graph

Suppose a Witten graph G is composed of m disconnected components G = Vn1 t Vn2 t
. . . Vnm.

B5 \ N(G,B5) is homotopic to the m connected spaces ∂(i)N(Vni , B
5) daisy-chained

together in a line by 1-cells. For the cell decomposition

• Take m 0-cells.

• Link them in a line by (m − 1) 1-cells. The ends of each 1-cell attach to different

0-cells.
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Figure 28: Σ4(G), the obvious way to cut it, and the easy way to cut it for the cell decomposition.

• Attach ni 3-cells to each 0-cell for 1 ≤ i ≤ m as above. We have m wedge sums of

3-spheres linked together in a line by 1-cells.

• Now wrap a 4-cell around each collection of ni 3-cells.

B5 \ N(G,B5) glued to itself is the same except we attach a further (m − 1) 1-cells,

each of which has both ends attached to the same 0-cell.

B5 \ N(G,B5) has most of the same homology groups as B5 \ N(Vn, B5) except that

now

H3(B5 \ N(G,B5)) = Z

P

j nj−m (H.4)

The first homology group is unchanged because there are no closed loops from the 1-cells.

B5 \ N(G,B5) glued to itself is a different story. H0 and Hi for i > 1 are the same as

B5 \ N(G,B5).

Each of the (m−1) 1-cell loops is a 1-cycle which is not the boundary of some 2-chain.

Thus it increases the number of free Abelian generators of H1 by m − 1

H1((B5 \ N(G,B5)) ∪ |∂(i)N (B5 \ N(G,B5))) = Z
m−1 (H.5)

H.5 Cell decomposition and homology for Σ4(G)

We want to find the cell decomposition of the 4-dimensional manifold with genus G, Σ4(G).

Figure 28 shows the 2-dimensional analogue of Σ4(2) and the different ways to cut it

up in order to do the cell decomposition. The first way, in the middle of figure 28, cuts

Σ4(G) into two S4s with three holes each (these holes are represented with dotted lines;

for Σ4(G) these holes will be S3-shaped). It turns out that this is a tricky way to do the

cell decomposition. It is better to use the cutting in the final picture of figure 28. This is

homotopically different to the middle cutting because there are non-trivial 1-cycles in the

left-hand piece of the final cutting.

The cell decomposition involves 1 0-cell, G 1-cells, G + 1 3-cells e3
α and 2 4-cells, e4

L

representing the left-hand piece of the last cutting in figure 28 and e4
R representing the

right-hand piece.

First attach all the ends of the G 1-cells to the 0-cell so that we get a wedge of G S1s.

Next attach the G + 1 3-cells e3
α to the 0-cell. The boundary of the closure of each

3-cell, S2, is identified to the point of the 0-cell so that the 3-cell, an open 3-ball, is closed
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Figure 29: The 0-cell, 1-cells and 3-cells of Σ4(2), where the 0-cell is the blob in the middle, the

1-cells are the thick lines and the 3-cells are the dotted lines.

to become a sphere S3. We now have a wedge of G S1s and G+1 S3s, i.e. G S1s and G+1

S3s with a point on each of them identified to the same point. See figure 29 for G = 2.

Next we need to describe how to attach the 2 4-cells, e4
L and e4

R.

e4
L attaches to the G 1-cells and the G+1 3-cells. We need to specify how the boundary

of the closure of e4
L, i.e. an S3, is mapped to the lower-dimensional cells. To do this split

the 3-sphere boundary up into 3G + 1 segments. In terms of coordinates on the 3-sphere

we let a φ ∈ [0, 2π] coordinate parameterize the X1−X2 plane. Each segment is defined by

φ ∈ [2(m−1)π
3G+1 , 2mπ

3G+1 ] for m = 1, . . . , 3G+1. Each segment is like a 3-ball (think segments of

the circle or sphere). Each of the G+1 3-cells has a single segment attached to it and each

of the G 1-cells has two segments attached to it on each side. The segments are attached

in order as indicated in figure 29, which generalizes to arbitrary genus.

When a segment is attached to an S3 the boundary of the segment (an S2) is identified

to a point to give S3 (just as when we attach the 3-cell to the 0-cell).

When we attach a segment to a 1-cell we identify the whole segment with the 1-ball

intersection of the X1 − X2 plane with the segment.

e4
R attaches to the G + 1 3-cells. We split the boundary of the closure of the e4

R into

G + 1 pieces and attach them to the 3-cells in order.

From this we can deduce the homology using the boundary operator dk(e
k
α) =

∑

β dαβek−1
β .

To find H4(Σ4(G)) we use d4(e
4
L) =

∑

α e3
α and d4(e

4
R) = −∑

α e3
α so that H4(Σ4(G))

is generated by Σ4(G) = e4
L + e4

R, which has no boundary. Thus H4(Σ4(G)) = Z.

All the 3-cells e3
α are annihilated by d3 so that ker d3 is spanned by {e3

α}. The image

of d4 is spanned by
∑

α e3
α, so H3(Σ4(G)) = Z

G+1/Z = Z
G. Roughly, the S3 cross-sections

near the different G holes are not homologous.

There are no 2-cells so H2(Σ4(G)) = {0}.
By well-known results about the homology of genus G graphs, H1(Σ4(G)) = Z

G.

H0(Σ4(G)) = Z because the manifold is arcwise-connected.
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Figure 30: The gluing of the 2-handle

As expected, Poincaré duality holds. For a general (d − 1)-dimensional boundary

constructed this way see appendix I.3.

The homology groups above can also be obtained by using the Mayer-Vietoris sequence

which follows from the construction of Σ4(G) as a union of two copies of S4 \ tG+1
α=1 (B4

◦)α
intersecting over tG+1

α=1 (S3)α.

H.6 Handlebody decompositions

As another way to visualize the topologies involved in our discussion, we give their han-

dlebody decompositions.

H.6.1 Handlebody decomposition for the complement of a connected graph

Consider the n-valent connected Witten graph Vn with a single n-fold vertex. To start

with we will work with a three-dimensional bulk because it is easy to visualize.

The handlebody decomposition of B3 \ N(Vn, B3) is as follows.

• Start with a 0-handle.

• Attach n 1-handles to the ball (taking care that the different 1-handles do not wind

around each other). We now have a filled pretzel with n holes, each generated by an

S1.

• Attach a single 2-handle. Glue it along S1 × B1 so that the S1 encircles each of the

n-holes of the donut once (see figure 30).

This lifts directly to five dimensions for B5 \ N(Vn, B5).

• Start with a 0-handle.

• Attach n 3-handles to the ball (taking care to avoid non-trivial windings). The

resulting manifold has n holes, each generated by an S3.

• Attach a single 4-handle. Glue it along S3 × B1 so that the S3 encircles each of the

n holes once.

For the set-up in a general dimension see appendix I.4.1.

– 83 –



J
H
E
P
0
3
(
2
0
0
7
)
0
7
2

H.6.2 Handlebody decomposition for the complement of a disconnected graph

We will describe two ways of providing the handle decomposition of B5 \ N(G,B5) where

G = Vn1 t Vn2 t . . . Vnm. The first is the one described above: take the m connected

B5 \ N(Vni , B
5) and glue them together with (m − 1) 1-handles.

The second way is similar to that for the connected cases.

• Start with a 0-handle.

• Attach
∑

i ni 3-handles to the ball (taking care to avoid non-trivial windings).

• For each connected component Vni attach a 4-handle. Glue it along S3 ×B1 so that

the S3 encircles ni holes. Make sure that the 4-handles encircle different holes.

For B5 \ N(G,B5) glued to a copy of itself use the same decomposition but add (m−1)

1-handles at the end.

I. Topology for gluings in general dimensions

Here we have a d-dimensional bulk and a (d − 1)-dimensional boundary.

I.1 Cell decomposition and homology for the complement of a connected graph

The cell decomposition of the (d − 1)-dimensional space ∂(i)(N(Vn, Bd)) is as follows.

• Take a single 0-cell.

• Attach to it n (d−2)-cells, with a map which sends the boundaries of the (d−2)-cells

(Sd−3) to the point of the 0-cell. The space is now a wedge sum of n spheres Sd−2,

i.e. it is the disjoint union of n spheres Sd−2 with a point on each sphere identified

to a single point.

• Now wrap a (d − 1)-cell around the n (d − 2)-cells. The (d − 1)-cell has a boundary

of Sd−2. To glue this to the n Sd−2s divide it up into n pieces and glue each nth

around each (d − 2)-sphere.

Note that for a connected Witten graph ∂(i)(N(Vn, Bd)) is the same as the n-punctured

(d−1)-sphere on which we do our CFT. The n spheres Sd−2 are the same as the boundaries

of the (d − 1)-balls we cut out around each puncture.

The homology groups for a connected Witten graph are

• H0(∂
(i)(N(Vn, Bd))) = Z since it is arcwise connected.

• Hi(∂
(i)(N(Vn, Bd))) = {0} for 1 ≤ i ≤ d − 3 since there are no i-cells.

• Hd−2(∂
(i)(N(Vn, Bd))) = Z

n−1 by the same reasoning as for d = 5.

• Hd−1(∂
(i)(N(Vn, Bd))) = {0} since there are no boundaryless (d − 1)-chains.
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This gives the Euler character formula

χ(∂(i)(N(Vn, Bd))) =
∑

j

(−1)jbj

= 1 + (−1)d−2(n − 1) (I.1)

I.2 Cell decomposition and homology for the complement of a disconnected

graph

Suppose a Witten graph G is composed of m disconnected components G = Vn1 t Vn2 t
. . . Vnm.

Bd \ N(G,Bd) is homotopic to the m connected spaces ∂(i)(N(Vni , B
d)) daisy-chained

together in a line by 1-cells. For the cell decomposition

• Take m 0-cells.

• Link them in a line by (m − 1) 1-cells. The ends of each 1-cell attach to different

0-cells.

• Attach ni (d− 2)-cells to each 0-cell for 1 ≤ i ≤ m as above. We have m wedge sums

of (d − 2)-spheres linked together in a line by 1-cells.

• Now wrap a (d − 1)-cell around each collection of ni (d − 2)-cells.

Bd \ N(G,Bd) glued to itself is the same except we attach a further (m − 1) 1-cells,

each of which has both ends attached to the same 0-cell.

Bd \ N(G,Bd) has most of the same homology groups except that

Hd−2(Bd \ N(G,Bd)) = Z

P

j nj−m (I.2)

For d > 3 the first homology group is unchanged because there are no closed loops from

the 1-cells.

Bd \ N(G,Bd) glued to itself is a different story. H0 and Hi for i > 1 are the same as

Bd \ N(G,Bd).

Each of the (m−1) 1-cell loops is a 1-cycle which is not the boundary of some 2-chain.

Thus it increases the number of free Abelian generators of H1 by m − 1. So for d > 3 we

have

H1((Bd \ N(G,Bd)) ∪ |∂(i)N (Bd \ N(G,Bd))) = Z
m−1 (I.3)

and for d = 3

H1((B3 \ N(G,B3)) ∪ |∂(i)N (B3 \ N(G,B3))) = Z

P

j nj−1 (I.4)

I.3 General genus boundaries

Here we work with a bulk of dimension d and a boundary of dimension d − 1.

The homology groups for a boundary of genus n − 1 for d > 3 are

• H0(Σd−1(n − 1)) = Z since the manifold is arcwise-connected.

– 85 –



J
H
E
P
0
3
(
2
0
0
7
)
0
7
2

• H1(Σd−1(n − 1)) = Z
n−1 from the topology of the graph.

• Hi(Σd−1(n − 1)) = {0} for 2 ≤ i ≤ d − 3.

• Hd−2(Σd−1(n− 1)) = Z
n−1 because the Sd−2 cross-sections near the different (n− 1)

holes are not homologous. This also follows from Poincaré duality for a closed,

compact, oriented surface.

• Hd−1(Σd−1(n − 1)) = Z since the manifold itself has no boundary and is arcwise-

connected.

I.4 Handlebody decompositions

I.4.1 Handlebody decomposition for the complement of a connected graph

Here we do a handlebody decomposition of Bd \ N(Vn, Bd).

• Start with a 0-handle.

• Attach n (d− 2)-handles to the ball (taking care to avoid non-trivial windings). The

resulting manifold has n holes, each generated by an Sd−2.

• Attach a single (d − 1)-handle. Glue it along Sd−2 × B1 so that the Sd−2 encircles

each of the n holes once.

From the CFT point of view this set-up corresponds to an Sd−1 with n operator

insertions. To perform the gluing we cut out from the Sd−1 a Bd−1
◦ hole around each

operator insertion. This gives us n disconnected Sd−2 boundaries. Each Sd−2 boundary

corresponds to the Sd−2 that generates each hole in the handlebody decomposition above

of the Bd \ N(Vn, Bd) bulk. The (d − 1)-handle above then makes sure that the n holes

meet up inside the bulk.

I.4.2 Handlebody decomposition for the complement of a disconnected graph

We will describe two ways of providing the handle decomposition of Bd \ N(G,Bd) where

G = Vn1 t Vn2 t . . . Vnm. The first is the one described above: take the m connected

Bd \ N(Vni , B
d) and glue them together with (m − 1) 1-handles.

The second way is similar to that for the connected cases.

• Start with a 0-handle.

• Attach
∑

i ni (d − 2)-handles to the ball (taking care to avoid non-trivial windings).

• For each connected component Vni attach a (d−1)-handle. Glue it along Sd−2×B1 so

that the Sd−2 encircles ni holes. Make sure that the (d−1)-handles encircle different

holes.

For Bd \ N(G,Bd) glued to a copy of itself use the same decomposition but add (m−1)

1-handles at the end.
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J. Identities, notation and conventions

We define

tr (σΦ) =
∑

i1,i2,...in

Φi1
iσ(1)

Φi2
iσ(2)

· · ·Φin
iσ(n)

(J.1)

The Schur polynomials are defined as a sum of these trace operators over the elements σ

of Sn, weighted by the characters of σ in the representation R of Sn,

χR(Φ) =
1

n!

∑

σ∈Sn

χR(σ)tr (σΦ) (J.2)

A representation R of Sn can be written as a Young diagram with n boxes, with which

we also associate a representation R of the unitary group.13 We can reverse the relation

between traces and Schur polynomials

tr (σΦ) =
∑

R(n)

χR(σ)χR(Φ) (J.3)

where we sum over representations R of Sn with Young diagrams of n boxes. To do this

we have used the orthogonality relation for two elements σ, τ ∈ Sn

∑

R(n)

χR(σ)χR(τ) =
n!

|[σ]|δτ∈[σ] (J.4)

where we have summed over representations of Sn. We also have another orthogonality

relation for two representations R,S of Sn

∑

σ∈Sn

χR(σ)χS(σ) = n!δRS (J.5)
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[62] P. Hořava and P.G. Shepard, Topology changing transitions in bubbling geometries, JHEP 02

(2005) 063 [hep-th/0502127].

[63] D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole

complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138].

[64] S.B. Giddings, D. Marolf and J.B. Hartle, Observables in effective gravity, Phys. Rev. D 74

(2006) 064018 [hep-th/0512200].

[65] A. Baratin and L. Freidel, Hidden quantum gravity in 3D Feynman diagrams,

gr-qc/0604016.

[66] J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859

[hep-th/9803002].

[67] N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60

(1999) 125006 [hep-th/9904191].

[68] K. Okuyama and G.W. Semenoff, Wilson loops in N = 4 SYM and fermion droplets, JHEP

06 (2006) 057 [hep-th/0604209].

– 91 –

http://arxiv.org/abs/hep-th/0510251
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C505
http://arxiv.org/abs/hep-th/9803131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C15%2C1859
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C15%2C1859
http://arxiv.org/abs/gr-qc/9711042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2C3093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2C3093
http://arxiv.org/abs/hep-th/0302072
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C8%2C587
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C8%2C587
http://jhep.sissa.it/stdsearch?paper=05%282003%29013
http://arxiv.org/abs/astro-ph/0210603
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD28%2C2960
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C126007
http://arxiv.org/abs/hep-th/0408133
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C191302
http://arxiv.org/abs/hep-th/0605263
http://arxiv.org/abs/hep-th/0610101
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0601%2C017
http://arxiv.org/abs/hep-th/0509184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C086003
http://arxiv.org/abs/hep-th/0606204
http://jhep.sissa.it/stdsearch?paper=02%282005%29063
http://jhep.sissa.it/stdsearch?paper=02%282005%29063
http://arxiv.org/abs/hep-th/0502127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C6997
http://arxiv.org/abs/hep-th/9506138
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C064018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C064018
http://arxiv.org/abs/hep-th/0512200
http://arxiv.org/abs/gr-qc/0604016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4859
http://arxiv.org/abs/hep-th/9803002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C125006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C125006
http://arxiv.org/abs/hep-th/9904191
http://jhep.sissa.it/stdsearch?paper=06%282006%29057
http://jhep.sissa.it/stdsearch?paper=06%282006%29057
http://arxiv.org/abs/hep-th/0604209


J
H
E
P
0
3
(
2
0
0
7
)
0
7
2

[69] J.Q. Chen, Group representation theory for physicists, World Scientific, Chapter 7 (1987).

[70] A. Partensky, On the generalized exchange operators for SU(n), J. Math. Phys. 13 (1972)

1503.

[71] S. Ramgoolam, Thesis, Yale 1995.

[72] R. Rabadán and F. Zamora, Dilaton tadpoles and D-brane interactions in compact spaces,

JHEP 12 (2002) 052 [hep-th/0207178].

[73] A. Hatcher, Algebraic topology, CUP (2002).

– 92 –

http://jhep.sissa.it/stdsearch?paper=12%282002%29052
http://arxiv.org/abs/hep-th/0207178
http://www.math.cornell.edu/~hatcher/

